
Complementing layout information with1

render information in SBML files2

Ralph Gauges, Sven Sahle and Katja Wegner
University of Heidelberg

Im Neuenheimer Feld 267
D-69120 Heidelberg

Germany

3

October 29, 20094

1 Introduction5

In 2003 we proposed an extension to the SBML file format that allowed pro-6

grams to include layout and render information in SBML files to store one7

or more graphical representations of the SBML model. During the discus-8

sions on the SBML mailing list, it soon became evident that a consensus for9

both layout and render information would not be reached easily, therefore10

we separated the layout from the render part of the specification and con-11

centrated on the inclusion of layout information into SBML files. Now three12

years later, we consider the layout extension to be ready for general usage13

and as a matter of fact, it has been accepted as an official extension to the14

upcoming SBML Level 3. There are several implementations for it and some15

programs already use it to exchange layout information on reaction networks.16

With the growing interest in graphical representations of reaction networks17

we feel that it is now time to complement the layout extension with a render18

extension that builds on it and allows the user to define not only the size and19

location of the objects, but also how they are to be rendered.20

2 Design decisions21

The first and as we think natural decision was to base the render extension22

on the existing layout extension. Secondly, we tried to make the render23

extension as flexible as possible in order to not impose any artificial limits24

on how programs can display their reaction networks.25

We wanted to keep the render extension independent of the SBML model26

as well as of the layout extension, therefore the render information will be27

stored as one or more separate blocks. There can be one block of render infor-28

mation that applies to all layouts and an additional block for each layout. In29

the beginning this render information will be stored in the annotation of the30

listOfLayouts element or the annotation of a layout element respectively.31

The render information consists of a set of styles that are associated with32

objects from the layout either by a list of ids of layout objects or by roles33

of layout objects or ids of their corresponding model elements. For example34

you can define a style that can be applied to all SpeciesReference objects or35

to all objects that have the role product.36

Global render information included in the annotation of the listOf-37

Layouts element will only be able to define styles that associate render in-38

formation with roles of elements, it can not associate styles with individual39

objects from a layout.40

Many of the elements used in the current render specification are based41

1

on corresponding elements from the SVG specification. This allows us to42

easily convert a combination of layout information and render information43

into a SVG drawing. At the same time we profit from the work that has44

already been done while creating the SVG specification.45

3 Render information46

The render extension provides two locations where styles can be defined.47

First each layout can have its own set of render information located in the48

annotation of the layout element (local render information). Second, a49

set of global render information objects located in the annotation of the50

listOfLayouts element can be defined.51

It is important to note that each layout can have more than one set of52

local render information and that it is also possible to define more then one53

global style. Each style can also reference another style that complements it,54

this way the user can create styles that are based on other styles. In contrast55

to local styles, the global styles can not reference individual layout elements56

by an id, they can only define role based or type based styles.57

3.1 Local render information58

The top level element for the local render information is called listOf-59

RenderInformation which can contain a list of one or more renderInformation60

elements of type LocalRenderInformation. In addition to the list of local61

render information objects, the ListOfLocalRenderInformation has two62

attributes to specify the version of the render information.63

versionMajor specifies the major version of the render information. Ma-64

jor version do not have to be backwards compatible to any lower major ver-65

sion of the render specification. versionMinor specifies the minor version66

of the render information. All minor versions within a major version have to67

be compatible.68

The LocalRenderInformation data type is based on the RenderIn-69

formationBase data type. The RenderInformationBase class is derived70

from SBMLs SBase type and has five attributes. The id attribute is of type71

SId like the ids in SBML. It is used to give the renderInformation element72

a unique id through which it can be referenced from other LocalRender-73

Information objects. The optional attribute name gives a LocalRender-74

Information object a more user friendly name that can be displayed in75

programs.76

2

The attributes programName and programVersion are optional and77

can be used to store information about the program that created the render78

information. Another optional attribute called referenceRenderInformation79

can be used to specify the id of another local or global render information80

object that complements the current render information object. So if a pro-81

gram can find no fitting render information in the current render information82

object, it can go on to the one referenced and see if it can find fitting informa-83

tion there. In order to avoid loops, only render information objects that have84

already been defined before may be referenced. So local render information85

objects may reference any global render information object as well as any86

local render information object that has already been defined and belongs to87

the same layout.88

In addition to those five attributes, the RenderInformationBase object89

has an attribute called backgroundColor which defines the background90

color for rendering the layout. In addition to those attributes, there are91

three elements. The first element is called listOfColorDefinitions and92

is used to predefine a set of colors to be referenced in styles. The second93

element listOfGradientDefinitions contains linear and radial gradients to94

be referenced in styles. How colors and gradients can be defined is explained95

in the section called ”Colors and gradients”.96

The third element is called listOfLineEndings and it is used to define97

a set of line endings that can be applied to path objects. This is explained98

in more detail in the section called ”Line endings”.99

The LocalRenderInformation class extends the RenderInformation-100

Base class by one element. The element is called listOfStyles and it can101

hold one or more local style objects. Each local style object is located in an102

element called style and is of type LocalStyle.103

A LocalStyle object has an attribute called id that uniquely identifies104

it. It also has an optional roleList attribute which lists all the roles the style105

applies to and it can have a typeList attribute which lists all the element106

types the style applies to. The valid types for the typeList attribute are a107

combination of one or more of the following values separated by whitespaces:108

• COMPARTMENTGLYPH,109

• SPECIESGLYPH,110

• REACTIONGLYPH,111

• SPECIESREFERENCEGLYPH112

• TEXTGLYPH,113

3

• GRAPHICALOBJECT and114

• ANY115

The ANY keyword specifies that this styles applies to any type of glyph and116

would be equivalent to listing all the other keywords. Concerning the valid117

keywords for the roleList attribute we had thought about taking those from118

some kind of controlled vocabulary. Preferably, this would be some kind of119

ontology like SBO. The specifics of this will have to be discussed with other120

interested parties.121

For the time being, all layout objects derived from GraphicalObject122

will get an additional attribute called objectRole. This attribute can be123

used to specify a string that specifies the role of the given object. If the same124

string appear s in the roleList of some render information object, the render125

information applies to the object, but only if there is no render information126

object that is more specific (see ”Style resolution” and ”Role resolution”127

below).128

LocalStyle objects can have one more optional attribute which is called129

idList. This is simply a list of ids of layout objects the style applies to.130

The only subelement of a style is a g element which specifies how the131

element(s) covered by the idList, roleList and typeList are to be rendered.132

The details of this element are described in the section about grouping.133

ListOfLocalRenderInformation inherits from SBase

versionMajor : unsigned int

versionMinor : unsigned int

renderInformation : LocalRenderInformation[1..∗]

RenderInformationBase inherits from SBase

id : SId

name : string {use=”optional”}
programName : string {use=”optional”}
programVersion : string {use=”optional”}
referenceRenderInformation : string {use=”optional”}
backgroundColor : string {use=”optional” default=”#FFFFFFFF” }
listOfColorDefinitions : ListOfColorDefinitions {use=”optional”}
listOfGradientDefinitions : ListOfGradientDefinitions {use=”optional”}
listOfLineEndings : ListOfLineEndings {use=”optional”}

4

LocalRenderInformation inherits from RenderInformationBase

listOfStyles : ListOfLocalStyles {use=”optional”}

ListOfLocalStyles inherits from SBase

style : LocalStyle[1..∗]

LocalStyle inherits from Style

idList : string[1..∗] {use=”optional”}

Style inherits from SBase

id : SId

roleList : string[1..∗] {use=”optional”}
typeList : string[1..∗] {use=”optional”}
g : Group

example:134

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"135

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">136

<layout id="Layout_1">137

<annotation>138

<listOfRenderInformation139

xmlns="http://projects.eml.org/bcb/sbml/render/version1_0_0">140

<renderInformation id="FancyRenderer_Default"141

name="default style"142

programName="FancyRenderer"143

programVersion="0.1.1">144

<listOfColorDefinitions>145

<colorDefinition ... />146

...147

</listOfColorDefinitions>148

<listOfGradientDefinitions>149

<linearGradient ... >150

...151

</linearGradient>152

<radialGradient ... >153

...154

</radialGradient>155

...156

5

</listOfGradientDefinitions>157

<listOfLineEndings>158

...159

</listOfLineEndings>160

<listOfStyles>161

<style id="CompartmentGlyphStyle" typeList="COMPARTMENTGLYPH">162

<g ...>163

...164

</g>165

</style>166

...167

</listOfStyles>168

</renderInformation>169

</listOfRenderInformation>170

</annotation>171

...172

</layout>173

</listOfLayouts>174

3.2 Global render information175

Global render information is specified very similar to local render information176

there are only some slight differences that one has to be aware of. Global177

render information is stored in an element called listOfGlobalRender-178

Information which contains one ore more renderInformation elements of179

type GlobalRenderInformation.180

The ListOfGlobalRenderInformation object has the same version at-181

tributes as the ListOfLocalRenderInformation object.182

The attributes and elements of GlobalRenderInformation objects and183

LocalRenderInformation objects are the same. The only difference here184

is the fact that GlobalRenderInformation objects may only reference ids185

of other GlobalRenderInformation objects in their referenceRenderIn-186

formation attribute.187

The listOfStyles element of the GlobalRenderInformation object188

contains one or more style elements but this time these are of type Glob-189

alStyle. The GlobalStyle data type is also very similar to the LocalStyle190

data type but the GlobalStyle does not have an idList attribute since191

referencing individual ids from a layout does not make sense for a global192

render information object. Otherwise global and local render information is193

specified in the same way.194

example:195

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"196

6

ListOfGlobalRenderInformation inherits from SBase

versionMajor : unsigned int

versionMinor : unsigned int

renderInformation : GlobalRenderInformation[1..∗]

GlobalRenderInformation inherits from RenderInformationBase

listOfStyles : ListOfGlobalStyles {use=”optional”}

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">197

<annotation>198

<listOfGlobalRenderInformation199

xmlns="http://projects.eml.org/bcb/sbml/render/version1_0_0">200

<renderInformation id="FancyRenderer_GlobalDefault"201

name="default global style"202

programName="FancyRenderer"203

programVersion="0.1.1">204

<listOfColorDefinitions>205

...206

</listOfColorDefinitions>207

<listOfGradientDefinitions>208

...209

</listOfGradientDefinitions>210

<listOfLineEndings>211

...212

</listOfLineEndings>213

<listOfStyles>214

...215

</listOfStyles>216

</renderInformation>217

</listOfGlobalRenderInformation>218

</annotation>219

</listOfLayouts>220

4 Styles221

4.1 Positions and sizes222

Positions and sizes for render elements can be specified as a combination of223

absolute values where the default unit is pt (1/72 inch) and relative values224

in % where the % symbol has to be added to the value. Each coordinate can225

have zero or one relative component and zero or one absolute component.226

For example to specify a coordinate that is 5 points left of the right edge of227

the current viewport the user could specify −5 + 100%.228

7

In order to make parsing of coordinate information easier, the absolute229

component has to be specified before the relative component. If the absolute230

component is 0.0, only the relative part has to be specified. All values are231

relative to the bounding box of the corresponding element in the layout. This232

bounding box basically specifies a canvas for the render elements to be drawn233

on.234

When applying transformations to elements with relative values, the rel-235

ative values have to be converted to absolute values first.236

4.2 Colors and gradients237

Although, it is possible to specify the color for a graphical primitive directly,238

colors and especially gradients can be specified in a so called listOfColor-239

Definitions and listOfGradientDefinitions element which are subele-240

ments of the RenderInformation data type. The listOfColorDefinitions241

element holds one or more elements called colorDefinition of type Col-242

orDefinition. The ColorDefinition data type is derived from SBase and243

has two additional attributes. One id attribute which uniquely identifies244

the ColorDefinition object within a RenderInformation object and an245

attribute called value which holds a color value.246

Color values are specified as a 6 to 8 digit hex string which defines the247

RGBA value of the color. If only the first six digits for the RGB value are248

given, the alpha value is assumed to be 0xFF which means that the color is249

totally opaque. Instead of specifying a color value, the value ’none’ can be250

given which is equal to no drawing at all. To specify ’none’ for the stop-color251

attribute of a gradient is not allowed.252

ColorDefinition inherits from SBase

id : SId

value : string

example:253

<listOfColorDefinitions>254

<colorDefinition id="darkred" value="#200000" />255

...256

</listOfColorDefinitions>257

All graphical primitives in the render extension have a stroke attribute258

that is used to specify the color of the stroke that is used to draw the curve259

or the outline of ellipses, rectangles or polygons. This stroke attribute can260

8

either hold a color value or it can hold the id of a predefined ColorDefinition261

object.262

The listOfGradientDefinitions element holds one or more linear-263

Gradient or radialGradient subelements of type LinearGradient or Ra-264

dialGradient respectively.265

The base class for both gradient types is called GradientBase and it266

has the two attributes id and spreadMethod. As well as a list of so called267

”gradient stops”. The id attribute is used to identify and reference a gradient268

within a render information.269

GradientBase inherits from SBase

id : SId

spreadMethod : string {use=”optional” default=”pad”}
stop : GradientStop[1..∗]

The spreadMethod attribute is optional and specifies the method that270

is used to continue the gradient pattern if the vector points do not span the271

whole bounding box of the object the gradient is applied to (see example272

below). The attribute can have three values called pad, reflect or repeat:273

• pad: the gradient color at the endpoint of the vector defines how the274

gradient is continued beyond that point (default value).275

• reflect: the gradient continues from end to start and then from start276

to end again and again.277

• repeat: the gradient pattern is repeated from start to end over and278

over again.279

To specify ”gradient stops” a gradient element can hold one or more280

subelements called stop which are of type GradientStop. The Gradi-281

entStop data type has two attributes. The first attribute, called offset,282

represents the relative distance from the starting point of the gradient. De-283

pending on the type of gradient, this is either the point defined by the x1,y1284

and z1 attributes (linear gradient) or the fx, fy and fz attributes (radial285

gradient). The value is given as a positive percentage value (usually some-286

where between 0% and 100%). The other attribute is called stop-stroke287

and defines the color for the given gradient stop. The attributes value can288

either be given as a hexadecimal color value or as the id of a ColorDefinition289

object from the listOfColorDefinitions (see above). To specify the id290

of another gradient as the value of a stop-color attribute is considered an291

9

Figure 1: example of different SVG spreadMethod values

error. In case the two points that define the gradient vector are identical,292

the area is to be painted with a single color taken from the last gradient stop293

element.294

There are a few rules that need to be considered when working with295

gradient stops. Basically those rules are the same as defined by the SVG296

specification.297

1. the offset value of a gradient stop should be between 0% and 100%. If298

the offset lies outside of this value, the value is adjusted to be either299

0% isf the given value is smaller than 0% or to 100% if the value is300

greater than 100%.301

2. The absolute part in any offset value is ignored, meaning it is considered302

to be 0.0 even if specified otherwise in a gradient stop.303

3. The offset of any gradient stop has to be greater or equal to the offset304

of the preceding fgradient stop. If a gradient stop has an offset that is305

smaller than the offset of the preceeding stop, the offset is considered306

to have the same value as the offset of the preceeding stop.307

4. If two gradient stops have the same offset value, the last gradient stop308

with this offset value determines the color at this point in the gradient.309

A linearGradient element has six attributes. The attributes x1, y1,310

z1, x2, y2 and z2 are all optional and define a vector on which the gradient311

stops are mapped. If not specified, x1, y1 and z1 default to 0% and x2,y2312

and z2 default to 100%.313

example:314

10

LinearGradient inherits from GradientBase

x1 : string {use=”optional” default=”0%”}
y1 : string {use=”optional” default=”0%”}
z1 : string {use=”optional” default=”0%”}
x2 : string {use=”optional” default=”100%”}
y2 : string {use=”optional” default=”100%”}
z2 : string {use=”optional” default=”100%”}

GradientStop inherits from SBase

offset : string

stop-color : string

<listOfGradientDefinitions>315

<linearGradient x1="30%" y1="50%" x2="70%" y2="50%">316

<stop offset="0%" stop-color="#0000A0" />317

<stop offset="100%" stop-color="darkred" />318

</linearGradient>319

...320

</listOfGradientDefinitions>321

The RadialGradient data type has seven additinal attributes. The at-322

tributes cx, cy and cz define the center of the radial gradient. The attributes323

are optional and can either be given in absolute or relative coordinates. The324

default value for all three attributes is 50%. The r attribute defines the ra-325

dius of the gradient and it can also be specified in either absolute or relative326

coordinates. Specifying negative values for r is considered an error. The327

attributes fx, fy and fz specify the focal point of the gradient. The gradient328

will be drawn such that the 0% stop is mapped to (fx,fy,fz). The attributes329

fx, fy and fz are optional. If one is omitted it is considered to equal to the330

value of cx, cy and cz respectively.331

If the focal point, which is determined by the values fx, fy and fz lies332

outside the circle, the focal point is considered to be located on the intersec-333

tion of the the line from the center point to the focal point and the sphere334

determined by the center point and the radius.335

If the radius is given in relative values, the relation is to the width as336

well as the height. This means that if the width of the bounding box and337

the height of the bounding box are not equal, cx,cy,cy and r dont’t actually338

specify a circle, but an ellipse.339

example:340

<listOfGradientDefinitions>341

11

RadialGradient inherits from GradientBase

cx : string {use=”optional” default=”50%”}
cy : string {use=”optional” default=”50%”}
cz : string {use=”optional” default=”50%”}
r : string {use=”optional” default=”50%”}
fx : string {use=”optional”}
fy : string {use=”optional”}
fz : string {use=”optional”}

<radialGradient cx="50%" cy="50%" r="20" spreadMethod="repeat">342

<stop offset="10%" stop-color="#000040" />343

<stop offset="90%" stop-color="#0000C0" />344

</radialGradient>345

...346

</listOfGradientDefinitions>347

4.3 Graphical primitives348

The graphical primitives polygons, rectangles and ellipses are based on the349

corresponding elements from SVG.For lines, arcs and general path primi-350

tives, we introduce the curve element which differs slightly from the layout351

extension with the same name. Whereas Point objects in the layout exten-352

sion could only contain absolute values for their coordinates, RenderPoint353

objects in the render extension can contain relative coordinate values.354

Since polygons are very similar to general path primitives, we use a similar355

structure to define curves and polygons in the render extension.356

All graphical primitives have attributes in common that specify some357

drawing properties. As mentioned in the ”Colors and gradients” section.358

Each graphical primitive has a stroke attribute that defines the color used359

for curves and outlines of geometric shapes. In addition to that, the stroke-360

width attribute specifies the width of the stroke and the stroke-dasharray361

is a list of positive integer numbers that specifies the lengths of dashes and362

gaps that are used to draw the line. The individual numbers in the list are363

separated by commas.364

E.g. ”5,10” would mean to draw 5 points, make a 10 point gap, draw 5365

points etc. If the pattern is to start with a gap, the first number has to be 0.366

If a style defines a stroke dasharray and this style is applied to a curve367

from the layout specification, one has to watch out for the fact that the layout368

curves may contain breaks (if the end point of segment n is not identical369

to the starting point of segment n+1). In this case each of the unbroken370

12

line stretches is considered a seperate curve object and the line stippling371

is applied to each curve. That means the line stippling is not continously372

applied through the gap, but it starts again after the gap.373

In addition to those attributes, ellipses, polygons and rectangles have an374

attribute called fill that specifies the fill style of those elements. The fill style375

can either be a hexadecimal color value or the id of a ColorDefinition object376

or the id of a GradientDefinition object. Instead of a color or gradient id,377

’none’ can be specified which means that the object is unfilled.378

Additionally, an attribute called fill-rule can be used to specify how the379

shape should be filled. Allowed values for fill-rule are:380

• nonzero (default) or381

• evenodd.382

For a detailed description on how those attributes work in detail, we would383

like to refer you to the corresponding documentation in the SVG specification.384

As time permits we will add our own documentation.385

Currently the fill-rule attribute is only usefull for polygons. All other386

shapes can not have alternating areas.387

As a common base class for all elements that can be drawn, we introduce388

the Transformation class which contains one attribute called transform389

that specifies an affine transformation matrix in 3D consisting of exactly390

twelve double values. Since the layout and render extension are only 2D391

so far, this class is only used as a base class for Transformation2D and392

we leave the complete specification of this class for a future version of this393

document.394

Transformation inherits from SBase

transform : double[12] {use=”optional”}

Since the current render information specification only defines 2D objects,395

we derive a second class called Transformation2D from Transformation.396

This new class restricts the transformation matrix to specify the six values397

of a 2D affine transformation. The class Transformation2D serves as the398

base class for all drawable 1D and 2D objects.399

Transformation2D inherits from Transformation

transform : double[6] {use=”optional”}

13

4.4 Transformations400

In order to be able to display text that is not aligned horizontally or vertically401

or to effectively compose groups of objects from primitives, transformations402

like rotation, translation and scaling are needed. SVG, among other options,403

allows the user to specify a 3x3 matrix transformation matrix:404

405 a c e
b d f
0 0 1

406

407

Since the last row of the matrix is always 0 0 1, the matrix is specified as408

a six value vector. Therefore, in the render extension each group or graphi-409

cal primitive is derived from the class Transformation2D and can have a410

transform attribute just as in SVG. The allowed value for the attribute has411

the form: a, b, c, d, e, f.412

The values for a,b,c,d,e and f depend on the transformation operation413

components and the order in which those transformation components are414

executed.415

There are five basic transformation operations that can be combined in416

a affine transformation matrix.417

4.4.1 Translation418

Translating something means moving it some distance along one or more of419

the axes. The corresponding 2D tranformation matrix is420

421 1 0 tx
0 1 ty
0 0 1

422

423

where tx and ty are the distance along the x and y axes by which the424

object shall be moved.425

4.4.2 Scaling426

Scaling means to multiply all coordintate components of an object by a cer-427

tain value. The corresponding 2D transformation matrix is428

429 sx 0 0
0 sy 0
0 0 1

430

14

431

where sx and sy are the scaling factors along the x and y axis respectively.432

4.4.3 Rotation433

With a rotation, an object can be rotated around the origin of the coordinate434

system. The corresponding 2D transformation matrix is435

436 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

437

438

where α is the angle of rotation around the origin.439

4.4.4 Skewing440

Skewing is the least used operation and we have to distinguish between skew-441

ing along the x or the y axis. The corresponding 2D transformation matrices442

are443

444 1 tan(α) 0
0 1 0
0 0 1

445

446

447 1 0 0
tab(β) 1 0

0 0 1

448

449

where α is the skewing angle of skewing along the x axis and β is the450

angle for skewing along the y axis.451

Combining several of the operations above means multiplying the trans-452

formation matrices that belong to the individual operations. Depending on453

the matrices that are multiplied, the order of the operations matter, e.g. it454

makes a difference if an object is tranlated before it is rotatet or if it is rotatet455

first.456

If an object specifies a transformation, this transformation is to be applied457

to the object prior to any other coordinate properties of the object. E.g. if458

a rectangle specifies a position of x = 10 and y = 20 and it also specifies459

a rotation by 45 degrees, the rotation is applied before the object is placed460

15

at P (10, 20). The transformation for an object is always in relation to the461

objects viewport. For most render objects, this would be the bounding box of462

the corresponding layout object. For layout curves, e.g. in reaction glyphs or463

species reference glyphs, the viewport is the complete diagram. For objects464

defined in line endings, the viewport is the bounding box of the line ending465

before it is applied to the line.466

example:467

<g ...>468

<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"469

font-family="serif" font-size="20.0"470

transform="1.0, 3.0, 2.5, 1.4, 4.0, 5.0">This is a Text</text>471

...472

</g>473

All objects that are derived from Transformation2D can have a trans-474

formation, this includes group elements. In contrast to other attributes on475

groups and children of groups, the transformation is not overwritten if it476

is specified in a child, but rather all transformations that are defined in an477

object hierarchy accumulate. E.g. when a group specifies a transformation478

and a child of the group also sets a transformation, the transformation for479

the child has to be applied to the child only and the transformation that is480

set on the group has to be applied to the whole group, i.e. to all children of481

the group.482

GraphicalPrimitive1D inherits from Transformation2D

stroke : string {use=”optional”}
stroke-width : string {use=”optional”}
stroke-dasharray : unsigned integer[1..∗] {use=”optional”}

GraphicalPrimitive2D inherits from GraphicalPrimitive1D

fill : string {use=”optional”}
fill-rule : string {use=”optional”}

4.4.5 Curves483

Simple lines and complex curves are represented by a curve element. A curve484

has a listOfElements element that can hold an arbitrary number of points485

and cubic bezier elements in any order . The only restriction is that the first486

16

element has to be a point. If the first element is a bezier element, it is to be487

interpreted as a point.488

As mentioned earlier, RenderPoint objects used to specify the individ-489

ual curve segments can contain relative values for their coordinates as well490

as absolute values. The coordinate values are always with respect to the491

bounding box of the layout object the render information applies to.492

To assign line endings to the start and end of a path object, two new493

attributes were introduced. They are called startHead and endHead and494

specify the id of the line ending that shall be applied to the start and the495

end of the curve respectively. Both attributes are optional.496

How line endings are defined is described in the section called ”Line end-497

ings”.498

Curve inherits from GraphicalPrimitive1D

startHead : SId {use=”optional”}
endHead : SId {use=”optional”}
listOfElements : ListOfElements

ListOfElements inherits from SBase

element : RenderPoint[1..∗]

RenderPoint inherits from SBase

id : SId {use=”optional”}
x : string

y : string

z : string {use=”optional” default=”0.0”}

RenderCubicBezier inherits from RenderPoint

basePoint1 x : string

basePoint1 y : string

basePoint1 z : string {use=”optional” default=”0.0”}
basePoint2 x : string

basePoint2 y : string

basePoint2 z : string {use=”optional” default=”0.0”}

example:499

17

<g ...>500

<curve stroke-width="2.0" stroke="#000000" >501

<listOfElements>502

<element xsi:type="RenderPoint" x="0%" y="50%" />503

<element xsi:type="RenderPoint" x="100%" y="50%" />504

<element xsi:type="RenderCubicBezier" x="0%" y="50%" basepoint1_x="50%" basepoint1_y="90%"505

basepoint2_x="50%" basepoint2_y="90%" />506

</listOfElements>507

</curve>508

...509

</g>510

4.4.6 Polygons511

A Polygon object is made up of a polygon element which contains a listOfElements512

that defines the edge of the polygon.513

The major difference to the Curve object is that the individual curve514

segments can only be straight lines and the last point of the curve is connected515

to the first, so the polygon is always closed. Therfore, the polygon can have516

a fill style that determines how the inside of the polygon is to be rendered.517

Polygon inherits from GraphicalPrimitive2D

listOfElements : ListOfElements

example:518

<g ...>519

<polygon stroke="#000000" stroke-width="3" fill="#FF0000">520

<listOfElements>521

<element xsi:type="RenderPoint" x="100%" y="33%"/>522

<element xsi:type="RenderPoint" x="20%" y="100%"/>523

<element xsi:type="RenderPoint" x="50%" y="0"/>524

<element xsi:type="RenderPoint" x="80%" y="100%"/>525

<element xsi:type="RenderPoint" x="0" y="33%"/>526

</listOfElements>527

</polygon>528

...529

</g>530

531

4.4.7 Rectangles532

The Rectangle object was taken from the SVG specification and allows the533

definition of rectangles with or without rounded edges.534

18

Figure 2: Rendering of a Path vs. rendering of a Polygon with the same base
points

The rectangle has the attributes x, y and z to specify its position within535

the bounding box of the enclosing layout object and a width and height at-536

tribute that specifies the width and height of the rectangle, either in absolute537

values or as a percentage of the width and height of the enclosing bounding538

box. The default value for the optional z attribute is 0.0.539

Additionally the rectangle has two optional attributes rx and ry that540

specify the radius of the corner curvature. If only rx or ry is specified, the541

other is presumed to have the same value as the one given. The default542

value for rx and ry is 0.0 which means that the edges are not rounded. The543

relative values in rx and ry are in relation to the width and the height of544

the rectangle respectively. So a value of 10% for rx means the radius of the545

corner is 10% of the width of the rectangle.546

Rectangle inherits from GraphicalPrimitive2D

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

rx : string {use=”optional” default=”0.0”}
ry : string {use=”optional” default=”0.0”}

example:547

<g ...>548

<rectangle x="0%" y="0%" width="100%" height="100%" rx="5%"549

fill="darkred" stroke="#000000" />550

...551

</g>552

19

4.4.8 Ellipses553

The definition of an ellipse was also taken directly from SVG. The ellipse554

element has the attributes cx, cy and cz to specify the center of the ellipse555

and rx and ry to specify the radius of the ellipse along the x-axis and the556

y-axis respectively. If only rx or ry is specified, the other is presumed to557

have the same value. Circles are a special case of an ellipse where rx and ry558

are equal. Again cz is optional and its default value is 0.0.559

Ellipse inherits from GraphicalPrimitive2D

cx : string

cy : string

cz : string {use=”optional” default=”0.0”}
rx : string

ry : string {use=”optional” default=rx}

example:560

<g ...>561

<ellipse cx="50%" cy="50%" rx="30%" fill="#00FF00" stroke="#000000" />562

...563

</g>564

4.4.9 Text elements565

In order to draw text, we use the text element from SVG with slight modi-566

fications. Like the text element in SVG, our text element has the optional567

attributes font-family to specify which font to use and font-size to specify568

the size of the font. If specified, font-size must be a positive value. It can569

be either an absolute value or a relative value. In the case of a relative value570

it specifies a percentage of the height of the corresponding object. Combina-571

tions of absolute and relative values as for the point objects in other objects572

are not allowed.573

For reasons of simplicity, we limit the display of text to normal text,574

outlined or filled-outlined text are not supported. Also in order to sim-575

plify the text display we think it would be best practice if programs would576

limit the choice of the font-family attribute to the generic families serif,577

sans-serif and monospace. But since those only apply to western lan-578

guages, it can make sense to use other values for font-familie in certain579

cases.580

The horizontal alignment of a text element can be specified by the text-581

anchor attribute. Allowed values are start, middle and end. SVG does not582

20

seem to provide any means for the vertical alignment of text. Since we feel583

that this is an important feature, we have added a corresponding attribute584

called vtext-anchor which determines the vertical justification of the text585

element. The values that are allowed for vtext-anchor are top, middle and586

bottom.587

The alignment attributes do not have default values because this would588

disable inheritance. Only the top level group in a style does have default589

values for the alignment attributes.590

Since we have a right handed coordiante system, the positive y axis nor-591

mally faces downward on the screen if the positive z-axis goes into the screen.592

This means that text actually has to be renderer with the top towards lower593

y-values.594

Figure 3: example text with marked baseline, ascent and descent

If the vtext-anchor is given as top, the top of the text has to be aligned595

with the bottom end (lower y value) of the bounding box (see Figure 4.4.9).596

If vtext-anchor is bottom, the bottom of the text has to be aligned with597

the top of the bounding box (higher y value) (see Figure 4.4.9). If vtext-598

anchor is middle, the vertical center of the text box has to be aligned with599

the vertical center of the bounding box (see Figure 4.4.9).600

Figure 4: vertical text alignment top

The text element can also have offset values for the x,y and z value. Those601

offsets are applied to the text after it has been positioned according to the602

anchor attributes. The default value for these three attributes is 0.0.603

21

Figure 5: vertical text alignment bottom

Figure 6: vertical text alignment middle

The text element has two more attributes. One is called font-weight604

and specifies whether a font is to be drawn bold. The only values allowed605

for font-weight are bold and normal. Likewise the font-style attribute606

determines whether a font is to be drawn italic or normal and consequently607

the only allowed values are italic and normal. Both attributes are optional.608

example:609

<g ...>610

<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"611

font-family="serif" font-size="20.0" >This is a Text</text>612

...613

</g>614

4.4.10 Bitmaps615

To include bitmaps into a graphical representation we use the image element616

from SVG. The image element in SVG can also be used to include complete617

22

Text inherits from GraphicalPrimitive1D

x : string

y : string

z : string {use=”optional” default=”0.0”}
font-family : string {use=”optional”}
font-size : string {use=”optional”}
font-weight : string {use=”optional”}
font-style : string {use=”optional”}
text-anchor : string {use=”optional”}
vtext-anchor : string {use=”optional”}

SVG vector images which we explicitly exclude in this version of the proposal618

since we think it would be too complex. If the need for the inclusion of SVG619

drawings arises, it is only a matter of rephrasing this specification.620

The image element has six attributes. The x, y and z attributes specify621

the position of the image within the bounding box and the width and height622

attributes specify its width and height. The z attribute is optional and its623

default value is 0.0. The actual image data is not embedded in the render624

information, but the image element has an attribute called href that refer-625

ences an external JPEG or PNG file. To simplify things, the reference has626

to be an absolute or relative path to a local file. Non-local image ressources627

(e.g. from the net) are currently not supported. If the referenced image628

is larger then the given width and height, it has to be scaled to the given629

dimensions. If the reference ressource can not be found, it is up to the appli-630

cation if nothing is drawn or some placeholder is displayed. Preferably the631

user would get some kind of notification about the missing ressource.632

Image inherits from Transformation2D

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

href : string

example:633

<g ...>634

<image x="10%" y="10%" width="80" height="100" href="Glucose.png" />635

...636

23

</g>637

4.5 Grouping638

Like in SVG, several graphical primitives can be grouped inside a g element639

to generate more complex render information.640

Group inherits from GraphicalPrimitve2D

font-family : string {use=”optional”}
font-size : string {use=”optional”}
font-weight : string {use=”optional”}
font-style : string {use=”optional”}
text-anchor : string {use=”optional”}
vtext-anchor : string {use=”optional”}
startHead : SId {use=”optional”}
endHead : SId {use=”optional”}

stroke, stroke-width, stroke-dasharrays, transform, fill,fill-rule,641

font-family, font-size, font-weight, font-style and text-anchor attributes642

can be applied to groups. If any of those attributes is specified for a Group643

object, it specifies the corresponding attribute for all graphical primitives and644

groups defined within this group. If a graphical primitive or a group redefines645

one or more of those attributes, the newly defined values take effect. The646

outermost group in a style always has default values for the attributes, all647

other embeded elements don’t have default values for their attributes. This648

way it is easy to distinguish between an attribute that has really been set649

and one that has not been set. The default values for the outermost group650

element are listed in table 1.651

It might seem a little unusual that the default values for stroke-width652

and font-size are set to 0. The reason for this is that a style that only653

contains an empty group is meant to define that the element the style ap-654

plies to is not to be rendered. Since the render information for curves in655

SpeciesReferenceGlyph and ReactionGlyph objects as well as the ren-656

der information for TextGlyph objects is defined via attributes from the657

outermost group element of a style (see below), the group element would658

explicitly have to define the stroke-width or the font-size to be 0 which659

would be inconsistent with the implied meaning of an empty group. The660

outermost group element can also contain information about arrow heads to661

24

attribute default value

stroke none
stroke-width 0.0

stroke-dasharrays empty list
transform 1.0, 0.0, 0.0, 0.0, 1.0, 0.0

fill none
fill-rule string {use=”optional” default=”nonzero”}

font-family sans-serif
font-size 0

font-weight normal
font-style normal

text-anchor start
vtext-anchor top

startHead none
endHead none

Table 1: Attribute default values.

be used on curves specified in the layout. This information is given via the662

startHead and endHead attributes just like for curve elements. These at-663

tributes only apply to Curve objects from the layout, not to RenderCurve664

objects within the group. Since those two attributes only make sense on the665

outermost group of a style, they are to be ignored on all other groups. The666

default value for those attributes is none which means that no line ending is667

to be drawn.668

Each group element also has an id attribute through which it can be669

identified. In addition to those attributes a Group object can contain 0 or670

more child elements that form the render information. These child elements671

have to be elements derived from Transformation2D, so right now this672

would be Images or everything derived from GraphicalPrimitive1D, e.g.673

rectangles, ellipses, curves, polygons, text elements or groups.674

example:675

<g stroke="#000000" font-family="serif" >676

<rectangle x="0%" y="0%" width="100%" height="100%"677

fill="blueLinearGradient" />678

<text x="50%" y="50%" font-size="80%" text-anchor="middle"679

stroke="#FF0000" />680

</g>681

25

5 Line endings682

In many graphs the relations between nodes are depicted by lines and often683

the type of relation is encoded in the line ending. For this reason, the render684

extension provides ways to specify a set of arbitrary line endings and means685

to apply those to path objects. The individual line endings are defined in an686

element called listOfLineEndings which comes right before the listOf-687

Styles.688

The individual line endings are defined as Group objects just like styles.689

Therefore, arbitrarily complex line endings can be defined. Each line ending690

is encapsulated in an element called lineEnding and contains two subele-691

ments.692

The first element is called boundingBox and it specifies the viewport693

that is used to draw the line ending. Just like the bounding boxes of the694

layout extension, this bounding box contains a position and a dimensions695

subelement. The dimensions element specifies the size of the viewport for696

the line ending along each of the axes. The position element specifies the697

offset from the end of the curve that the line ending is applied to. A position698

of (0.0, 0.0, 0.0) means that the origin of the line endings bounding box is699

mapped directly to the end of the curve. For a description on how the700

mapping is calculated in all other cases see the section called ”Mapping line701

endings to curves”.702

The second subelement is a group element that holds the render infor-703

mation for the line ending.704

The two attributes of the lineEnding element are the id attribute which705

is used to specify a unique id for the line ending by which it can be refer-706

enced and an attribute called enableRotationalMapping. The enable-707

RotationalMapping attribute specifies whether a line ending will be ro-708

tated depending on the slope of the line it is applied to or if it is drawn just709

the way it was specified. The default value for the attribute is true which710

means that the line ending is rotated depending on the slope of the line. A711

more detailed description of this mapping is given in figure 5.712

In order to declare that a certain line ending is to be used on a path object,713

the curve element has two attributes called startHead and endHead which714

hold the id of a line ending definition for the start and for the end of the715

path respectively.716

The top level group in a line ending differs from top level groups in normal717

graphical elements in one respect. The top level group of a line ending inherits718

all attributes from the line it is applied to save for the attributes for the line719

endings themselves. This way a stylesheet can define one line ending which720

can be applied to lines of different colors and it inherits the color from the721

26

line. If the group also inherited the attributes for the line endings and it722

contained a curve element itself, we would have generated an endless loop.723

LineEnding inherits from GraphicalPrimitive2D

enableRotationalMapping : boolean default=true

boundingBox : BoundingBox

g : Group

example:724

<lineEnding id="SimpleArrowHead">725

<boundingBox>726

<position x="-10.0" y="-4.0" />727

<dimensions width="12.0" height="8.0"/>728

</boundingBox>729

<g>730

<polygon>731

<curve>732

<listOfCurveSegments>733

<curveSegment xsi:type="LineSegment">734

<start x="100%" y="50%" />735

<end x="0%" y="100%" />736

</curveSegment>737

<curveSegment xsi:type="LineSegment">738

<start x="0%" y="100%" />739

<end x="0%" y="0%" />740

</curveSegment>741

</listOfCurveSegments>742

</curve>743

</polygon>744

</g>745

</lineEnding>746

5.1 Mapping line endings to curves747

In order to apply a line ending which is defined using only 2D coordinates748

onto a line which has been defined using 3D coordinates, we need to define749

a kind of mapping. The first definition we make is that the origin of the line750

ending viewport is mapped to the end of the line to which the line ending is751

applied. If the enableRotationalMapping attribute is set to false, the752

line endings coordinate system is the same as the global coordinate system753

used to draw the layout, only the origin is moved to that end of the line the754

line ending is applied to. If the enableRotationalMapping attribute is set755

to true, which is the default, we define that the x,y-plane of the line endings756

27

Figure 7: example of a line ending with and without rotation mapping en-
abled

viewport is mapped to the plane that results from taking the unit vector of757

the slope of the line and the unit vector that results from orthonormalizing758

the slope vector and a second vector that has no component along the z axis.759

If the slope of the line has a positive component along the x axis, the or-760

thonormalized vector also has to have a positive component along the y axis.761

In order to retain the right handed coordinate system, the z axis of the line762

endings coordinate system is perpendicular to the plane created by the other763

two vectors and has a positive component along the global coordinate sys-764

tems z-axis. Likewise if the slope has a negative component along the global765

coordinate systems x axis, the y component of the orthonormalized second766

vector has a negative component along the y axis of the global coordinate767

system and to retain the right handed coordinate system, the third vector768

which is perpendicular to the plane made by the slope and its orthonormal-769

ized vector, has a positive component along the global coordinate systems z770

axis.771

If the slope of the line points directly along the positive z axis of the global772

coordinate system, the line endings coordinate system is mapped to the line773

ending by a -90 rotation around the y axis of the line endings coordinate774

system and a translation of the origin of the line endings coordinate system775

to the end of the line. If the slope points directly down the negative z axis,776

28

the line endings coordinate system has to be rotated by +90 around its y777

axis before translation to the position of the curves end.778

This may all sound very complicated, but in the end, the calculations to779

be done are not difficult and straight forward.780

The mathematical description of the mapping and an example are given781

in Appendix A.782

6 Style resolution783

To resolve which style applies to a certain object, one should follow the rule784

that more specific style definitions take precedence over less specific ones785

and that if there are several styles with the same specificity, the first one786

encountered in the file is to be used. In essence, this means that a program787

first has to search the local render information for a style that references the788

id of the object. If none is found, it searches for a style that mentions the789

role of the object. If it has one, see next section. If it does not find one, it790

searches for a style for the type of the object.791

If a render information references another render information object via792

its referenceRenderInformation attribute, the program has to go through793

that one as well to see if a more specific render information is present there.794

If the chain of referenced RenderInformation objects has been searched and795

no style has been found that fits, it is up to the program how the object is796

rendered.797

If several type based styles are found that would fit, a style that applies798

to only one type takes precedence over a style that applies to several types.799

If a program explicitly wants to define render information that states that800

some objects are not to be rendered at all, it has to define a style that does801

nothing, i.e. has no render information but applies to the objects that should802

not be rendered.803

7 Role resolution804

This render extension explicitly provides means to write render information805

that renders layout objects based on certain roles those render objects or806

their corresponding model objects have. So far SBML models or layouts do807

not contain such role information or only for a limited number of objects808

if one would consider the role attribute of SpeciesReferenceGlyph objects809

to fall into this category. Although there is currently no means to specify810

these roles, there are already initiatives underway that try to complement811

29

SBML files with more biological information based on ontologies. One of812

these initiatives, the sboTerms, is about to be included into SBML Level 2813

Version 2. This ontology or a similar one could provide this role information814

for layout objects in the future.815

For the time being, we define an additional attribute called objectRole816

for all layout objects derived from GraphicalObject including Graph-817

icalObject itself. The attribute specifies a user defined role string. render818

information including the same role string in its roleList attribute applies819

to the object. This is only true if no more specific render information takes820

precedence (see ”Style resolution”).821

A specific style can reference one or more roles to which it applies. When822

a program tries to determine which style applies to a specific object it might823

have to determine the role of the object layout first. If the layout object itself824

has a role, this will be taken, otherwise if the layout object is associated with825

an object in the model, the program should get the role from the associated826

object. If none of them has a role, no role based style can be applied to the827

object.828

8 Style information for reaction glyphs and829

species reference glyphs830

When defining a style for a ReactionGlyph or SpeciesReferenceGlyph831

object, one has to distinguish between layout objects that only specify a832

bounding box for the object and those that specify a curve. In the case of a833

bounding box, you want to define complete render information, whereas in834

the case of a curve, you only want to set certain attributes that determine835

certain aspects of how the curve should be drawn, e.g. its color. To resolve836

this conflict, the style for such an object has to define render information for837

both cases. The render information for the case of a bounding box is speci-838

fied just like render information for any other object within a group. Render839

information for the case of a curve is defined by the appropriate attributes840

that are in effect in the outermost Group object itself. Those attributes841

include stroke, stroke-width and stroke-dasharray. Additionally start-842

Head and endHead can be specified to define line endings for layout curve843

objects. If the group does not define one or more of these attributes, the844

default value is used (see section ”Grouping”).845

30

Figure 8: style with render information for objects with curve or bounding
box

9 Style information for text glyphs846

Just as in the case of curves in ReactionGlyphs and SpeciesReferenceG-847

lyphs, TextGlyphs can be considered render information which is located848

in the layout. A TextGlyph specifies the text to be rendered, it therefore849

does not need additional render information in the form of a text element.850

On the other hand, it needs render information in the form of font prop-851

erties. Just as for the Curve object for ReactionGlyphs and Species-852

ReferenceGlyphs, this render information is taken from the font related853

attributes of the outermost group element of the style that is used to render854

a TextGlyph. Any additional information within the group is ignored. If855

the group does not specify any of the font-family, font-size, font-weight,856

font-style, text-anchor or vtext-anchor attributes, the default values are857

to be used.858

10 Uniqueness of ids859

Since local and global render information objects can reference other render860

information objects, programs creating render information need to make sure861

that all the ids are unique within the reference history. In other words, a862

render information object that references another render information object863

must make sure that none of its ids is equal to an id in any of the directly864

or indirectly referenced render information objects.865

An exception to this rule is to create e.g. a color definition with the same866

id as the color definition in a referenced style in this case interpreting pro-867

grams can assume that this color definition is supposed to override the color868

31

definition with the same name in the referenced render information object.869

Likewise it is also possible to override a color definition with a gradient and870

vice versa, line ending definitions on the other hand can only be replaced by871

other line ending definitions.872

11 Appendix A873

The mapping of arrow heads to line endings involves some transformations874

which we would like to illustrate with two examples. The first example as875

depicted in Figure 9 defines a straight line and a line ending which is to be876

applied to the end of the line. The line ending specifies a bounding box with877

a size of 4x4 and a position of P (−2,−2). The origin of the line ending is878

at o(0.0, 0.0, 0.0) and the bounding box extends along the positive x- and879

y-axes. The position of the bounding box is the offset by which the origin of880

the bounding box has to be translated from the endpoint of the curve.881

Figure 9: Curve with arrow head and no rotational mapping

Since the arrow head in the first example explicitly disables rotation map-882

ping by specifying enableRotationalMapping=false in the definition of883

the line ending, the process of mapping the arrow head to the line is sim-884

ply a matter of moving the origin of the line endings coordinate system885

to the end point of the line E(ex, ey) plus the offset that is specified as886

the position P (px, py, pz) of the line endings bounding box F = E + P =887

(ex + px, ey + py, ez + pz). In our example the origin of the line endings888

coordinate system has to be moved 2 units up and two to the left of the and889

of the curve that the line ending is applied to.890

The result of this operation is depicted in Figure 10.891

32

Figure 10: Curve with mapped arrow head and no rotational mapping

The second example is very similar to the first example, only now, the892

rotational mapping for the arrow head is enabled. This means that we now893

have to execute two steps in order to map the arrow head to the line ending.894

First we need to rotate the arrow head so that the x-axis of the arrow895

heads coordiante system is aligned with the slope s = dy
dx

of the curve.896

Figure 11: Step 1: Rotation

The rotation of the arrow head involves the following steps:897

1. calculate the normalized direction vector of the slope:898

We first need to find the two points that determine the slope at the end899

of the line. One point is always the endpoint of the line (E(ex, ey, ez)).900

The second point depends on whether the last element of the line is a901

straight line or if it is a bezier element. If it is a bezier element, the902

second point is the second basepoint of the bezier element, if it is a903

straight line, it is either the preceeding point or the endpoint of the904

preceeding bezier element. We call this second point S(sy, dy, sz).905

33

The direction vector can be calculated as v(vx, vy, vz) = (ex− sy.ey−906

sy, ez − sz). To normalize the vector we have to calculate the length907

l =
√
vx2 + vy2 + vz2 of the direction vector and divide all elements of908

v by this length. vn(vnx, vny, vnz) = (vx/l, vy/l, vz/l)909

2. calculate the normalized vector that is910

(a) orthogonal to the direction vector of the line911

(b) located in the plane x- and y-axis912

If the direction vector is parallel to the y-axis (vx = 0.0), the orthog-913

onal vector w is parallel to the x-axis (w(vy, 0, 0)). For all other cases914

w is w(wx,wy, wz) = (−vny ∗ vnx, 1− vny
2,−vny ∗ vnz).915

Again we have to normalize this vector by dividing through its length916

n =
√
wx2 + wy2 + wz2, which results in the normlized vector wn(wnx,wny, wnz) =917

(wx/n,wy/n, wz/n).918

3. create the transformation matrix that converts the original coordinate919

system into the coordinate system that is made up of the two calculated920

vectors:921

The transformation matrix that results from the two normalized vector922

that we calculated in the steps above is m =

 vnx wnx 0.0 0.0
vny wny 0.0 0.0
vnz wnz 0.0 1.0

923

The second step moves the origin of the arrow heads coordinate system924

to the endpoint of the line, which is exactly the same as we did in the first925

example.926

Mapping of an arrow head to the beginning of a curve is exactly the same927

as for the end of a curve, only the direction of the line has to be reversed928

and in case of a cubic bezier, one has to use the first basepoint rather than929

the second basepoint.930

12 Changes931

12.1 Draft ??/??/2009932

• Add the backgroundColor attribute to the render information ob-933

jects934

• fill-rule in GraphicalPrimitive2D no longer has a default value. If935

there was a default value, the inheritance of attributes would not work936

34

Figure 12: Step 2: Translation

Figure 13: Curve with mapped arrow head and rotational mapping

because one can not distuinguish between a default value and a value937

set by the user.938

• Rephrase the paragraph about default values for group elements. It939

now states that only the outermost group in a style has default values940

for its arguments, all elements within that group don’t have default941

values for any of their attributes.942

• Clearify what rx and ry in the rectangle relate to. So far it was not943

specified if they relate to the size of the bounding box or the size of the944

rectangle. Now it is made clear that they are relative to the size of the945

rectangle.946

• Add some explanations about handling gradient stops.947

• Add documentation on handling certain cases for center and focal948

points values on radial gradients.949

35

• Remove curves from the list of elements that have a fill attribute, be-950

cause they don’t since they are derived from GraphicalPrimitive1D.951

• Add some words about accumulating transformations.952

• Removed the inherit type for fill-rule because fill rules are inherited953

from the group anyway if they are not specified.954

• Added an attribute, vtext-anchor, to texts to specify a vertical align-955

ment for a text. The same attribute has also been added to the group956

element.957

• Rewrote how to interpret the offsets on a text element.958

• Line endings now inherit all attributes from the line they are applied959

to save for the line ending attributes themselves since this would lead960

to an endless loop.961

• References in images can only be to local ressources. Image files from962

the net or other places are not supported.963

• Specify that general transformations as specified by the transform964

attribute are to be applied to objects before any other transformation,965

e.g. offsets.966

• Added some more sentences on how transformations are to be applied967

to objects, and what coordinate system they apply to.968

• Specified what happens with line stippling if a layout curve has gaps.969

• Changed the curve and polygon specification to simplify the design.970

• Added some examples for vertical text placement.971

• Rewrote and simplified the section about the placement of line endings.972

12.2 Draft 01/30/2008973

• The LocalRenderInformation and the GlobalRenderInformation974

type now have a common base class called RenderInformationBase.975

• All classes for rendered 2D objects are now derived from the new976

classes Transformation and Transformation2D. The Transforma-977

tion now holds the transform attribute which has been part of Graph-978

icalPrimitive1D. The consequence of this is that Images which are979

now also derived from Transformation2D can be transformed.980

36

• The section on transformations has been extended to explain what the981

six elements of the transform attribute represent.982

• The fill-rule attribute has been missing from the Group class and983

has now been added. Some more small changes in the section about984

grouping.985

Thanks to Frank Bergmann for the valuable feedback, for providing me986

with examples and his help in testing the implementation.987

37

