
Complementing layout information with
render information in SBML files

Ralph Gauges, Sven Sahle and Katja Wegner
EML Research

Schloss-Wolfsbrunnen Weg 33
D-69118 Heidelberg

Germany

October 11, 2006



1 Introduction

In 2003 we proposed an extension to the SBML file format that allowed pro-
grams to include layout and render information on graphical representation
of reaction networks in SBML files. It soon became evident during the dis-
cussion on the SBML mailing list that a consensus for both layout and render
information would not be reached fast, therefore we split the layout and the
render part and concentrated on reaching consensus concerning the inclusion
of layout information into SBML files. Now two years later, we consider the
layout extension to be ready for general usage and as a matter of fact, it
has been accepted as an official extension to be included into SBML Level 3.
There are already several implementations for it and some programs already
use it to exchange layout information on reaction networks. With the grow-
ing interest for graphical representations of reaction networks, we feel that
it is now time to complement the layout extension with a render extension
that builds on it and allows the user to define not only where the objects are
to be located, but how they are to be rendered as well.

2 Design decisions

The first and as we think natural decision was to base the render extension
on the existing layout extension. Secondly, we tried to make the render
extension as flexible as possible in order to not impose any artificial limits on
how programs can display their reaction networks. Since most programs do
graphical representation of reaction networks in 2D, we decided to include
only 2D render information in this first version of the render extension. If
the need for 3D render information should arise, we will extend the render
extension to include this information as well. We want to keep the render
extension independant of the SBML model as well as the layout extension,
therefore the render information will be stored as one or more seperate blocks.
There can be one block of render information that applies to all layouts and
blocks for each layout. In the beginning this render information will be
stored in the annotation of the listOfLayouts or the annotation of a layout
respectively.

The render information consists of a set of styles that are associated with
objects from the layout either by a list of ids of layout objects or by roles of
layout objects or their corresponding model elements. Consider as example,
you can define a style that can be applied to all SpeciesReference objects
that are products. The render information included in the annotation of the
listOfLayouts element will only be able to define styles that associate render

1



information with roles of elements, it can not associate styles with individual
objects from a layout. In order not to reinvent the wheel we loosely based
this specification on SVG.

3 Defining render information

The render extension provides two locations where styles can be defined.
First each layout can have its own set of render information located in the
annotation of the layout itself. Second, a set of global render information
located in the annotation of the listOfLayouts can be defined. It is important
to note that each layout can have more then one style and that it is also
possible to define more then one global style. Each style can also reference
another style that complements it, this way the user can create styles that
are based on other styles and only make slight modifications to the style they
are based on. In contrast to local styles, the global styles can not reference
individual layout elements by an id, it can only define role based or type
based styles.

The top level element for the per layout render information is called
listOfRenderInformation which can contain a list of one or more render-

Information elements of type LocalRenderInformation. The LocalRender-
Information datatype is based on the SBase datatype from SBML and has
five attributes. The id attribute is of type SId just like the ids used in
SBML. It is used to give the renderInformation element a unique id through
which it can be referenced from other LocalRenderInformation objects. The
optional attribute name is there to be able to give a LocalRenderInforma-
tion object a more user friendly name that can be displayed in programs.
In cases where there is more then one LocalRenderInformation object per
layout, this might make it easier for a user to find the render information he
or she wants to associate with a given layout. The attributes programName

and programVersion are optional and can be used to store information about
the program that created the render information. Another optional attribute
called referenceRenderInformation can be used to specify the id of another
local (or global) render information object that complements the current ren-
der information object. So if a program can find no fitting render information
in the current render information object, it can go on to the one referenced
and see if it can find fitting information there. In order to avoid loops, only
render information objects that have already been defined before may be ref-
erenced. So local render information objects may reference any global render
information object as well as any local render information object that has
already been defined.

2



In addition to those five attributes, the LocalRenderInformation object
has four elements. The first element is called listOfColorDefinitions and
is used to predefine a set of color to be referenced in styles. The second ele-
ment is called listOfGradientDefinitions and it is used to predefine linear
and radial gradients to be referenced in a style. How colors and gradients
can be defined is explained in the section called Colors and Gradients.
The third is called listOfLineEndings and it is used to define a set of line
endings that can be applied to path objects. This is explained in more detail
in the section called Defining Line Endings. The fourth element is called
listOfStyles and it can hold one or more local style objects. Each local
style object is located in an element called style and is of type LocalStyle.

First, a LocalStyle has an attribute called id that uniquely identifies it.
It also has an optional roleList attribute which lists all the roles the style
applies to and it can have a typeList attribute which lists all the element
types the style applies to. The valid types for the typeList attribute are
a combination of one or more of the following values separated by whites-
paces: COMPARTMENTGLYPH, SPECIESGLYPH, REACTION-
GLYPH, SPECIESREFERENCEGLYPH, TEXTGLYPH, GRAPHICAL-
OBJECT and ANY

The ANY keyword specifies that this styles applies to any type of glyph
and would be equivalent to listing all the other keywords. Concerning the
valid keywords for the roleList attribute we had thought about taking those
from some kind of controlled vocabulary. Preferably, this would be some
kind of ontology like SBO. The specifics of this will have to be discussed
with other interested parties. For the time being, all layout objects derived
from GraphicalObject will get an additional attribute called objectRole. This
attribute can be used to specify a string that specifies the role of the given
object. If the same string appears in the roleList of some render information
object, the render information applies to the object, but only if there was
not a render information object that is more specific (see Style resolution
and Role resultion below). LocalStyle objects can have one more optional
attribute which is called idList. This is simply a list of ids of objects from
the layout the style applies to.

The only subelement of a style is a g element which specifies how the
element(s) covered by the idList, roleList and typeList are to be rendered. The
details of this element are described in the section about grouping below.

3



ListOfLocalRenderInformation inherits from SBase

renderInformation : LocalRenderInformation[1..∗]

LocalRenderInformation inherits from SBase

id : SId

name : string {use=”optional”}
programName : string {use=”optional”}
programVersion : string {use=”optional”}
referenceRenderInformation : string {use=”optional”}
listOfColorDefinitions : ListOfColorDefinitions {use=”optional”}
listOfGradientDefinitions : ListOfGradientDefinitions {use=”optional”}
listOfLineEndings : ListOfLineEndings {use=”optional”}
listOfStyles : ListOfLocalStyles {use=”optional”}

ListOfLocalStyles inherits from SBase

style : LocalStyle[1..∗]

LocalStyle inherits from Style

idList : string[1..∗] {use=”optional”}

Style inherits from SBase

id : SId

roleList : string[1..∗] {use=”optional”}
typeList : string[1..∗] {use=”optional”}
g : Group

example:

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<layout id="Layout_1">
<annotation>
<listOfRenderInformation

xmlns="http://projects.eml.org/bcb/sbml/render/level2">
<renderInformation id="FancyRenderer_Default"

name="default style"
programName="FancyRenderer"
programVersion="0.1.1">

<listOfColorDefinitions>
<colorDefinition ... />

.
.
.

4



</listOfColorDefinitions>
<listOfGradientDefinitions>
<linearGradient ... >

.

.

.
</linearGradient>
<radialGradient ... >

.

.

.
</radialGradient>

.

.

.
</listOfGradientDefinitions>
<listOfLineEndings>

.

.

.
</listOfLineEndings>
<listOfStyles>
<style id="CompartmentGlyphStyle" typeList="COMPARTMENTGLYPH">
<g ...>
.
.
.

</g>
</style>

.

.

.
</listOfStyles>

</renderInformation>
</listOfRenderInformation>

</annotation>
.
.
.

</layout>
</listOfLayouts>

Global render information is specified very similar to local
render information there are only some slight differences that
one has to be aware of. Global render information is stored in
an element called listOfGlobalRenderInformation which con-
tains one ore more renderInformation elements of type Global-

5



RenderInformation. The attribute and elements of GlobalRen-
derInformation objects and LocalRenderInformation objects are
the same. The only difference here is the fact that GlobalRen-
derInformation objects in their referenceRenderInformation

attribute may only reference ids of other GlobalRenderInforma-
tion objects that have already been defined. The listOfStyles
element of the GlobalRenderInformation object contains one or
more style elements but this time these are of type GlobalStyle.
The GlobalStyle datatype is also very similar to the LocalStyle
datatype, the only difference being that the GlobalStyle does not
have an idList attribute since referencing individual ids from
a layout does not make sense for a global render information
object. Save for those few differences, global and local render
information is specified in the same way.

ListOfGlobalRenderInformation inherits from SBase

renderInformation : GlobalRenderInformation[1..∗]

GlobalRenderInformation inherits from SBase

id : SId

name : string {use=”optional”}
programName : string {use=”optional”}
programVersion : string {use=”optional”}
referenceRenderInformation : string {use=”optional”}
listOfColorDefinitions : ListOfColorDefinitions {use=”optional”}
listOfGradientDefinitions : ListOfGradientDefinitions {use=”optional”}
listOfLineEndings : ListOfLineEndings {use=”optional”}
listOfStyles : ListOfGlobalStyles {use=”optional”}

example:

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<annotation>
<listOfGlobalRenderInformation

xmlns="http://projects.eml.org/bcb/sbml/render/level2">
<renderInformation id="FancyRenderer_GlobalDefault"

name="default global style"

6



programName="FancyRenderer"
programVersion="0.1.1">

<listOfColorDefinitions>
.
.
.
</listOfColorDefinitions>
<listOfGradientDefinitions>

.

.

.
</listOfGradientDefinitions>
<listOfLineEndings>

.

.

.
</listOfLineEndings>
<listOfStyles>

.

.

.
</listOfStyles>

</renderInformation>
</listOfGlobalRenderInformation>

</annotation>
</listOfLayouts>

3.1 Defining styles

3.2 Specifying positions and sizes

Positions and sizes for render elements can be specified as a
combination of absolute values where the default unit is pt (1/72
inch) like in the layout extension and relative values in % where
the % symbol has to be added to the value. Each coordinate
can have zero or one relative component and zero or on absolute
component. E.g. to specify a coordintate that is 5 points from
the right edge of the current viewport the user could specify -
5+100%. In order to make parsing of coordinate infomrmation
easier, the absolute component has to be specified before the
relative component if there is a relative component. All values
are relative to the bounding box of the corresponding element

7



in the layout. This bounding box basically specifies a viewbox
for the render elements to be drawn on.

3.3 Colors and Gradients

Although, it is possible to specify the color for a graphical prim-
itive directly, colors and especially gradients can be specified
in a so called listOfColorDefinitions and listOfGradient-

Definitions element which is a subelement of the RenderIn-
formation data type. The listOfColorDefinitions element
holds one or more elements called colorDefinition of type
ColorDefinition. The ColorDefinition data type is derived from
SBase and has two additional attributes. One id attribute which
uniquely identifies the ColorDefinition object within a Render-
Information object and an attribute called value which holds a
color value.

Color values are specified as a 6 to 8 digit hex string which
defines the RGBA value of the color. If only the first six digits for
the RGB value are given, the alpha value is assumed to be 0xFF
which means that the color is totally opaque. SVG only has
RGB color definitions and the A value is handled by the stroke-
opacity and fill-opacity attribute. The way SVG handles the
opacity of a color differs from other software frameworks which
mostly use RGBA values to specify a color and the opacity.
Since we think using RGBA values is more common, we choose
to use RGBA values for the render extension as well. Instead of
specifying a color value, the value ’none’ can be given which is
equal to no drawing at all. To specify ’none’ for the stop-color
of a gradient is not allowed.

ColorDefinition inherits from SBase

id : SId

value : string

8



example:

<listOfColorDefinitions>
<colorDefinition id="darkred" value="#200000" />

.

.

.
</listOfColorDefinitions>

All graphical primitives in the render extension have a stroke
attribute that is used to specify the color of the stroke that is
used to draw the curve or the outline of ellipses, rectangles or
polygons. This stroke attribute can either hold a color value
or it can hold the id of a predefined ColorDefinition object.

The listOfGradientDefinitions element holds one or more
linearGradient or radialGradient subelements of type Lin-
earGradient or RadialGradient respectively. A linearGradient

element has eight attributes. The id attribute uniquely iden-
tifies it within a RenderInformation object. The attributes x1,
y1, z1, x2, y2 and z2 are all optional and define a vector on
which the gradient stops are mapped. If not specified, x1, y1
and z1 default to 0% and x2,y2 and z2 default to 100%. The
last attribute called spreadMethod is also optional and specifies
the method that is used to continue the gradient pattern if the
vector points do not span the whole bounding box of the object
the gradient is applied to. The attribute can have three values
called pad, reflect or repeat. A value of pad, which is also
the default, means that the gradient color at the endpoint of the
vector defines how the gradient is continued beyond that point.
A value of reflect means the gradient continues from end to
start and then from start to end again and so on. A value of
repeat simply means that the gradient pattern is repeated from
start to end over and over again.

To specify the mentioned gradient stops the linear gradient
element can hold one or more subelements called stop which
are of type GradientStop. The GradientStop datatype has two

9



Figure 1: example of different SVG spreadMethod values

attributes. The first attribute, called offset, represents the dis-
tance from the starting point of the vector defined by x1, y1,
z1, x2, y2 and z2. The value is given as a positive percentage
value (usually somewhere between 0% and 100%). The other
attribute is called stop-stroke and defines the color for the
given gradient stop. The attributes value can either be given as
a hexadecimal color value or as the id of a ColorDefinition ob-
ject from the listOfColorDefinitions (see above). To specify
the id of another gradient as the value of a stop-color attribute
is considered an error. In case the two points that define the
gradient vector are identical, the area will be painted with a
single color taken from the last gradient stop element.

example:

<listOfGradientDefinitions>
<linearGradient x1="30%" y1="50%" x2="70%" y2="50%">
<stop offset="0%" stop-color="#0000A0" />
<stop offset="100%" stop-color="darkred" />

</lineaGradient>
.
.
.

</listOfGradientDefinitions>

The RadialGradient data type has 9 attributes. Just like the
LinearGradient it has an id that uniquely identifies it within

10



LinearGradient inherits from SBase

id : SId

x1 : string {use=”optional” default=”0%”}
y1 : string {use=”optional” default=”0%”}
z1 : string {use=”optional” default=”0%”}
x2 : string {use=”optional” default=”100%”}
y2 : string {use=”optional” default=”100%”}
z2 : string {use=”optional” default=”100%”}
spreadMethod : string {use=”optional” default=”pad”}
stop : GradientStop[1..∗]

GradientStop inherits from SBase

offset : string

stop-color : string

a RenderInformation object and it also has the same spread-

Method attribute with the same possible values. The attributes
cx, cy and cz define the center of the radial gradient. The
attributes are optional and can either be given in absolute or
relative coordinates. If ommited, these three attribute values
default to 50%. The r attribute defines the radius of the gra-
dient and it can also be specified in either absolute or relative
coordinates. Specifying negative values for r is considered an
error just like it is in SVG. The attributes fx, fy and fz specify
the focal point of the gradient. The gradient will be drawn such
that the 0% stop is mapped to (fx,fy,fz). The attributes fx, fy
and fz are optional. If one is omitted it is considered to coincide
with the value of cx, cy and cz respectively.

11



RadialGradient inherits from SBase

id : SId

cx : string {use=”optional” default=”50%”}
cy : string {use=”optional” default=”50%”}
cz : string {use=”optional” default=”50%”}
r : string {use=”optional” default=”50%”}
fx : string {use=”optional”}
fy : string {use=”optional”}
fz : string {use=”optional”}
spreadMethod : string {use=”optional” default=”pad”}
stop : GradientStop[1..∗]

example:

<listOfGradientDefinitions>
<radialGradient cx="50%" cy="50%" r="20" spreadMethod="repeat">
<stop offset="10%" stop-color="#000040" />
<stop offset="90%" stop-color="#0000C0" />

</radialGradient>
.
.
.

</listOfGradientDefinitions>

3.4 Graphical primitives

The graphical primitives polygons, rectangles and ellipses are
based on the corresponding elements from SVG. For lines, arcs
and general path primitives, we basically reuse the curve element
from the layout extension. There is however one difference to
the Curve datatype from the layout extension. Whereas Point
objects in the layout extension could only contain absolute val-
ues for their coordinates, Point objects in the render extension
can contain relative coordinate values. Since polygons are very
similar to general path primitives, we also make use of the Curve
datatype to specify polygons in the render extension.

All graphical primitives have some attributes in common that
specify some drawing properties. As mentioned in the Colors

12



and Gradients section, each graphical primitive has a stroke
attribute that defines the color curves and outlines of geomet-
ric shapes are drawn. In addition to that, the stroke-width at-
tribute specifies the width of the stroke and the stroke-dasharray
is a list of numbers that specifies the lengths of dashes and gaps
that are used to draw the line. The individiual numbers in the
list are seperated by kommas. In addition to those attributes,
ellipses, polygons, ellipses, curves and rectangles have an at-
tribute called fill that specifies the fill style of those elements.
The fill style can either be a hexadecimal color value or the
id of a ColorDefinition object or a GradientDefinition object.
Instead of specifying a color or gradient name, ’none’ can be
specified. E.g. if you want to have some shape unfilled, specify
a fill value of ’none’. Additionaly an attribute called fill-rule

can be used to specify how the shape should be filled. Allowed
values for fill-rule are nonzero which is the default, evenodd

or inherit. For a detailed description on how those attributes
work, we would like to refer you to the corresponding documen-
tation in the SVG spec. As time permits we will add our own
documentation eventually. Another attribute that all graphical
primitives have in common is the transform attribute. This
attribute can be used to specify a six element matrix which
corresponds to a affine transformation matrix. The details are
described in the section called ”Transformations” below.

GraphicalPrimitive1D inherits from SBase

stroke : string {use=”optional”}
stroke-width : string {use=”optional”}
stroke-dasharray : double[1..∗] {use=”optional”}
transform : string {use=”optional”}

GraphicalPrimitive2D inherits from GraphicalPrimitive1D

fill : string {use=”optional”}
fill-rule : string {use=”optional” default=”nonzero”}

13



3.4.1 Curves

Simple lines and complex curves are represented by the curve
element introduced in the layout extension. A curve has a
listOfCurveSegments which can hold an arbitrary number of line
segments and cubic bezier elements in any order. With this,
any path (no matter how complex it is) can be represented. As
mentioned above, Point objects used to specify the individual
curve segments can contain relative values for their coordinates
as well as absolute values. The coordinate values are always
with respect to the bounding box of the layout object the ren-
der information applies to. To assign line endings to the start
and end of a path object two new attributes were introduced
they are called startHead and endHead and specify the id of
the line ending that shall be applied to the start and the end of
the curve respectively. Both attributes are optional. How line
endings are defined is described in the section called Defining

Line Endings.

example:

<g ...>
<curve stroke-width="2.0" stroke="#000000" >
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="50%" />
<end x="100%" y="50%" />

</curveSegment>
</listOfCurveSegments>
</curve>
.
.
.

</g>

3.4.2 Polygons

A polygon object is made up of a polygon element which contains a listOfCurveSegments
with curveSegment elements that defines the edge of the polygon. The major differences
to the curve object is that the individual curveSegments can only be straight lines and that
last point of the curve is connected to the first, so the polygon is always closed and that

14



Curve inherits from GraphicalPrimitive2D

startHead : SId {use=”optional”}
endHead : SId {use=”optional”}
listOfCurveSegments : ListOfCurveSegments

ListOfCurveSegments inherits from SBase

curveSegment : LineSegment[1..∗]

Point inherits from SBase

id : SId {use=”optional”}
x : double

y : double

z : double {use=”optional” default=”0.0”}

LineSegment inherits from SBase

start : Point

end : Point

CubicBezier inherits from LineSegment

basePoint1 : Point {use=”optional”}
basePoint2 : Point {use=”optional”}

the polygon can therefore have a fill style that determines how the inside of the polygon
is to be rendered.

Polygon inherits from GraphicalPrimitive2D

listOfCurveSegments : ListOfCurveSegments

example:

<g ...>
<polygon fill="darkred" stroke="#000000" >
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="50%" />
<end x="100%" y="50%" />

</curveSegment>
</listOfCurveSegments>

</polygon>
.
.
.

</g>

15



Figure 2: Rendering of a Path vs. rendering of a Polygon with the same base
points

3.4.3 Rectangles

The rectangle definition was taken from SVG and allows the
definition of rectangles with or without rounded edges. The
rectangle has the attributes x, y and z to specify its position
within the bounding box of the enclosing layout object and a
width and height attribute that specifies the width and height
of the rectangle, either in absolute values or as a percentage
of the width and height of the enclosing bounding box. The
default value for the optional z attribute is 0.0. Additionally
the rectangle has two optional attributes rx and ry that specify
the radius of the corner curvature. If only rx or ry is specified,
the other is presumed to have the same value. The default value
for rx and ry is 0.0 which means that the edges are not rounded.

Rectangle inherits from GraphicalPrimitive2D

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

rx : string {use=”optional” default=”0.0”}
ry : string {use=”optional” default=”0.0”}

16



example:

<g ...>
<rectangle x="0%" y="0%" width="100%" height="100%" rx="5%"

fill="darkred" stroke="#000000" />
.
.
.

</g>

3.4.4 Ellipses

The definition of an ellipse was also taken directly from SVG.
The ellipse has the attributes cx, cy and cz to specify the center
of the ellipse and rx and ry to specify the radius of the ellipse
along the x-axis and the y-axis respectively. If only rx or ry is
specified, the other is presumed to have the same value. Circles
are a special case of an ellipse where rx and ry are equal. Again
cz is optional and its default value is 0.0.

Ellipse inherits from GraphicalPrimitive2D

cx : string

cy : string

cz : string {use=”optional” default=”0.0”}
rx : string

ry : string {use=”optional”}

17



example:

<g ...>
<ellipse cx="50%" cy="50%" rx="30%" fill="#00FF00" stroke="#000000" />

.

.

.
</g>

3.4.5 Text elements

In order to draw text, we use the text element from SVG with
slight modifications. Like the text element in SVG, our text
element has the attributes font-family to specify which font
to use and font-size to specify the size of the font. Both at-
tributes are optional. If specified, font-size must be a positive
absolute or relative size.

For reasons of simplicity, we limit the display of text to nor-
mal text, outlined or filled-outlined text are not supported. Also
in order to simplify text display we think it would be best prac-
tice if programs would limit the choice of the font-family at-
tribute to the generic families serif, sansserif and monospace.
But since those only apply to western languages, it make sense
to use other values for font-familie in certain cases.

The horizontal alignment of text element can be specified by
the text-anchor attribute. Allowed values are start, middle
and end. SVG does not seem to provide any means for the
vertical alignment of text, therefore in order to make it easier
for implementers we don’t. On the other hand if people think
that this is a necessary feature, we can either extend the allowed
values for the text-anchor attribute, or we can add a second
attribute with the same allowed values to do vertical text align-
ment. Depending on the value of the text-anchor attribute, the
x, y and z attributes of the text element either specify the left
bottom corner, the middle bottom position or the right bottom
corner of the text. As in rectangles and ellipses, the z attribute

18



is optional and its default value is 0.0.
The text element has two more attributes. One is called

font-weight and specifies wether a font is to be drawn bold.
The only values allowed for font-weight are bold and normal.
Likewise the font-style attribute determines wether a font is
to be drawn italic or normal and consequently the only allowed
values are italic and normal. Both attributes are optional.

Text inherits from GraphicalPrimitive1D

x : string

y : string

z : string {use=”optional” default=”0.0”}
font-family : string {use=”optional”}
font-size : string {use=”optional”}
font-weight : string {use=”optional”}
font-style : string {use=”optional”}
text-anchor : string {use=”optional”}

example:

<g ...>
<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"

font-family="serif" font-size="20.0" >This is a Text</text>
.
.
.

</g>

3.4.6 Bitmaps

To include bitmaps into a graphical representation we use the
image element from SVG. The image element in SVG can also be
used to include complete SVG vector images which we explicitely
exclude in this version of the proposal since we think it would be
too complicated. If the community feels that there is the need to
include vector graphics, we could integrate the according SVG
specificatin without changes.

19



The image element has six attributes. The x, y and z at-
tributes specify the position of the image within the bounding
box and the width and height attributes specify its width and
height. The z attribute is optional and its default value is 0.0.
The actual image data is not embedded in the render informa-
tion, but the image element has an attribute called xlink:href

that references an external JPEG or PNG file. If the referenced
image is larger then the given width and height, it has to be
scaled to the given dimensions.

Image inherits from SBase

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

href : string

example:

<g ...>
<image x="10%" y="10%" width="80" height="100" href="Glucose.png" />

.

.

.
</g>

20



3.5 Transformations

In order to be able to display text that is not aligned horizon-
tally or vertically or to effectively compose groups of objects
from primitives, transformation like rotation, translation and
scaling are needed. SVG, among other options, allows the user
to specify a 3x3 matrix transformation matrix:


a c e
b d f
0 0 1


Since the last row of the matrix is always 0 0 1, the matrix is

specified as a six vector. Therefore, in the render extension each
group or graphical primitive can have a transform attribute just
as in SVG. The allowed value for the attribute is the form: a, b,

c, d, e, f, where a-f denote the values for the transformation
matrix as stated above.

example:

<g ...>
<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"

font-family="serif" font-size="20.0"
transform="1.0, 3.0, 2.5, 1.4, 4.0, 5.0">This is a Text</text>

.

.
</g>

3.6 Grouping

Like in SVG, several graphical primitives can be grouped in-
side a g element to generate more complex render informa-
tion. stroke, stroke-width, stroke-dasharrays, transform,
fill, font-family, font-size, font-weight, font-style and
text-anchor attributes can be applied to groups. If any of
those attributes is specified for a Group object, it specifies the

21



attribute default value

stroke-width 0.0
stroke-dasharrays empty list

transform 1.0, 0.0, 0.0, 0.0, 1.0, 0.0
fill None

font-family sans-serif
font-size 0

font-weight normal
font-style normal

text-anchor start
startHead none
endHead none

Table 1: Attribute default values.

corresponding attribute for all graphical primitives and groups
defined within this group. If a graphical primitive or a group
redefines one or more of those attributes, the newly defined val-
ues take effect. If an object within the group does not redefine
those values, those of the group apply. If an attribute is not
defined in any object of a style, its default values take effect.
These default values are listed in Table 1.

It might seem a little unusual that the default values for
stroke-width and text-size are set to 0. The reason for this
is that a style that only contains an empty group is meant to
define that the element the style applies to is not to be rendered.
Since the render information for curves in SpeciesReferenceG-
lyphs and ReactionGlyphs as well as the render information for
TextGlyphs is defined via attributes from the outermost group
element of a style (see below), the group would explicitely have
to define the stroke-width or the text-size to be 0 which would
be inconsistent with the implied meaning of an empty group.
The outermost group can also contain information about arrow

22



heads to be used on curves specified in the layout. This infor-
mation is given via the startHead and endHead attributes just
like for curve elements. These attributes only apply to curve
objects from the layout, not to curve objects within the group.
Since those two attributes only make sense on the outermost
group of a style, they are to be ignored on all other groups. The
default value for those attributes is none which means that no
line ending is to be drawn.

Each group has an id through which it can be referenced.
This way groups can be nested by referencing one group within
another. In order not to create loops, only groups that have
been defined previously in the render information can be refer-
enced. No forward declarartions as references are allowed. In
addition to those attributes a Group object can contain 0 or
more child elements that form the render information. These
child elements can either be graphical primitives, e.g. rectan-
gles, ellipses, curves, polygons, text elements images or groups.

Group inherits from GraphicalPrimitive1D

fill : string

font-family : string

font-size : string {use=”optional” default=”0.0”}
font-weight : string

font-style : string

text-anchor : string

children : (GraphicalPrimitive1D and/or Image)[0..∗]

example:

<g stroke="#000000" font-family="serif" >
<rectangle x="0%" y="0%" width="100%" height="100%"

fill="blueLinearGradient" />
<text x="50%" y="50%" font-size="80%" text-anchor="middle"

stroke="#FF0000" />
</g>

23



4 Defining Line Endings

In many graphs the relations between nodes are depicted by
lines and often the type of relation is encoded in the line end-
ing. For this reason, the render extension provides ways to spec-
ify a set of arbitrary line endings and means to apply those to
path objects. The individual line endings are defined in an el-
ement called listOfLineEndings which comes right before the
listOfStyles.

The individual line endings are defined as groups just like
styles. This way arbitraryly complex line endings can be de-
fined. Each line ending is encapsulated in an element called
lineEnding and contains two subelements. The first element
is called boundingBox and it specifies the the viewport that is
used to draw the line ending. Just like the bounding boxes of the
layout extension, this bounding box contains a position subele-
ment and a dimensions subelement. The dimensions element
works just as you would expect it, since it specifies the size of
the viewport for the line ending along each of the axes. The
meaning of the position element differs slightly. If the position
was at P (0.0, 0.0, 0.0), the origin of the line ending would be
mapped to the corresponding vertex of the line (either start or
end), if any of the position components differs from 0.0, it spec-
ifies by how much the line ending has to be moved in respect
to the vertex it is applied to. (For thos of you who are fami-
lier with SVG markers, this is just the opposite of how SVG is
doing it. So in order to generate SVG markers refX and refY
attributes, you have to multiply the corresponding position val-
ues by −1. The second child is a group element that hold the
render information for the line ending.

The two attributes of the lineEnding element are the id at-
tribute which is used to specify a unique id for the line ending by
which it can be referenced and an attribute called enableRotationalMapping.

24



The enableRotationalMapping attribute specifies wether a line
ending will be rotated depending on the slope of the line it is
applied to or if it is drawn just the way it was specified. The
default value for the attribute is true which means that the line
ending is rotated depeinding on the slope of the line. A more
detailed description of this mapping is given below.

In this version of the render extension, we limit the render in-
formation to 2D objects. Since the layout information on which
the render information relies is in a 3D coordinate system, we
need to provide some definition of how the 2D line ending ob-
jects are to be applied to the 3D path objects. First we define
that the origin of the coordinate system for drawing a line end-
ing is the endpoint of the line the line ending is to be applied to.
If the enableRotationalMapping attribute is set to true, we
define that the tangent to the path object at this point coincides
with the positive x axis of the coordinate system for the arrow
head. In order to be able to use one line ending definition for
the start as well as the end of the line, we also define that the
tangent vector to the path object at the endpoint points away
from the line.

In order to apply a line ending which is defined using only
2D coordinates onto a line which has been defined using 3D
coordinates, we need to define a kind of mapping. The first
definition we make is that the origin of the line ending viewport
is mapped to the end of the line to which the line ending is
applied. If the enableRotationalMapping attribute is set to
false, the line endings coordinate system is the same as the
global coordinate system used to draw the layout, only the origin
is moved to the line end the line ending is going to be applied to.
If the enableRotationalMapping attribute is set to true, which
is the default, we define that the x,y-plane of the line endings
viewport is mapped to the the plane that results from taking the
unit vector of the slope of the line and unit vector that results

25



from orthonormalizing the slope vector and a second vector that
has no component along the z axis. If the slope of the line has a
positive component along the x axis, the orthonormalized vector
also has to have a positive component along the y axis. In order
to retain the right handed coordinate system, the z axis of the
line endings coordinate system is perpendicular to the plane
created by the other two vectors and has a positive component
along the global coordinate systems z-axis. Likewise if the slope
has a negative component along the global coordinate systems x
axis, the y component of the orthonormalized second vector has
a negative component along the y axis of the global coordinate
system and to retain the right handed coordinate system, the
third vector which is perpendicular to the plane made by the
slope and its orthonormalized vector, has a positive component
along the global coordinate systems z axis.

If the slope of the line points directly along the positive z
axis of the global coordinate system, the line endings coordinate
system is mapped to the line ending by a -90◦ rotation around
the y axis of the line endings coordinate system and a translation
of the origin of the line endings coordinate system to the end of
the line. If the slope points directly down the negative z axis,
the line endings coordinate system has to be rotatet by +90◦

around its y axis before translation to the position of the curves
end.

This may all sound very complicated, but in the end, the
calculations to be done are not difficult and straight forward. A
mathematical description of the calculations necessary is given
in Appendix A.

If we define Q = − dys

dxs
and D = ” 1√

Q2+1
” then the transfor-

mation of any point P = (x, y, z) in the line endings coordinate
system to the global coordinate system depending on the slope

26



of the curve ~S =


dxs

dys

dzs

 and the curves endpoint O =


xO

yO

zO


can be decribed by:

Pnew =

 dxs ∗ x + SGN(dxs) ∗Q ∗D ∗ y − dzs ∗ SGN(dxs) ∗D ∗ z + xO

dys ∗ x + SGN(dxs) ∗D ∗ y + dzs ∗ SGN(dxs) ∗Q ∗D ∗ z + yO

dzs ∗ x + (dxs ∗ SGN(dxs) ∗D − dys ∗ SGN(dxs) ∗Q ∗D) ∗ z + zO


This is for the cases where the slope vector ~S does run parallel to the global

coordinate systems z axis. For this species case, the new point is calculated by:

Pnew =

 SGN(dzs) ∗ −z + xO

y + yO

SGN(dzs) ∗ x + zO


The SGN function describes the sign of its argument. It returns 1 for positive

numbers, 0 for 0 and −1 for negative numbers. For the details of how this trans-
formation was calculated and the definition of the SGN function see Appendix
A.

The mapping of line endings to lines is done before all transformations defined
for the line have been applied. Transformation defined on the line ending itself or
on any of its components are to be applied before the line ending is mapped to the
curve.

In order to declare that a certain line ending is to be used on a path object, the
curve element has two attributes called startHead and endHead which hold the
id of a line ending definition for the start and for the end of the path respectively.

LineEnding inherits from GraphicalPrimitive2D

id : SId

enableRotationalMapping : boolean default=true

boundingBox : BoundingBox

g : Group

example:

<lineEnding id="SimpleArrowHead">
<boundingBox>
<position x="-10.0" y="-4.0" />
<dimensions width="12.0" height="8.0"/>

</boundingBox>
<g>

27



<polygon>
<curve>
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="100%" y="50%" />
<end x="0%" y="100%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="100%" />
<end x="0%" y="0%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="0%" />
<end x="100%" y="50%" />

</curveSegment>
</listOfCurveSegments>

</curve>
</polygon>

</g>
</lineEnding>

Figure 3: example of a line ending with and without rotation mapping en-
abled

28



5 Style resolution

When a program tries to resolve which style applies to a certain
object it should follow the rule that more specific style defini-
tions take precedence over less specific ones and that if there are
several styles with the same specificity, the first one encountered
in the file is to be taken. In essence this means that a program
first has to search the local render information for a style that
references the id of the object, if none is found it searches for a
style that mentions the role of the object if it has one (see next
section). If it does not find one, it searches for a style for the type
of the object. If a render information references another ren-
der information object via its referenceRenderInformation

attribute, the program has to go through that one as well to see
if a more specific render information is present there. If the chain
of referenced RenderInformation objects has been searched and
no style has been found that fits, it is up to the program how
the object is rendered. If a program explicitely wants to define
render information that states that some objects are not to be
rendered at all, it has to define a style that does nothing, i.e.
has no render information but applies to the objects that are
not to be rendered. If several type based styles are found that
would fit, a style that applies to only one type takes precedence
over a style that applies to several types.

6 Role resolution

This render extension explicitely provides means to write render
information that renders layout objects based on certain roles
those render objects or their corresponding model objects have.
So far SBML models or layouts do not contain such role informa-
tion or only for a limited number of objects if one would consider
the role attribute of SpeciesReferenceGlyph objects to fall into

29



this category. Although there is currently no means to specify
these roles, there are already initiatives underway that try to
complement SBML files with more biological information based
on ontologies. One of these initiatives, the sboTerms, is about
to be included into SBML Level 2 Version 2. This ontology or a
similar one could provide this role information in the future. For
the time being, we define an additional attribute called object-
Role for all layout objects derived from GraphicalObject includ-
ing GraphicalObject itself. The attribute specifies a user defined
role string. render information including the same roleString in
its roleList applies to the object. This is only true if no more
specific render information takes precedence (see Style resolu-
tion).

A specific style can reference one or more roles to which it
applies. Roles of objects could be taken from the sboTerm of
the corresponding object and we expect model objects as well
as layout objects to use sboTerms to specify roles for individual
objects. When a program tries to determine which style applies
to a specific object it might have to determine the role of the ob-
ject first. If the layout object itself has a role, this will be taken,
otherwise if the layout object is associated with an object in
the model, the program should get the role from the associated
object. If none of them has a role, no role based style can be
applied to the object.

7 Style information for ReactionGlyphs and

SpeciesReferenceGlyphs

When defining a style for a ReactionGlyph or SpeciesRefer-
enceGlyph object, one has to distinguish wether the layout only
specifies a bounding box for the object or if it specifies a curve.
In the case of a bounding box, you want to define complete ren-

30



der information, whereas in the case of a curve, you only want
to set certain attributes that determine certain aspects about
how the curve is drawn, e.g. its color. To resolve this conflict,
the style for such an object has to define render information for
both cases. The render information for the case of a bound-
ing box is specified just like render information for any other
object within a Group. Render information for the case of a
curve is defined by the appropriate attributes that are in effect
in the outermost Group object itself. Those attributes include
stroke, stroke-width and stroke-dasharray. Additionally
startHead and endHead can be specified to define line endings
for layout curve objects.. If the group does not define one or
more of these attributes, the default value is used (see section
on Grouping).

Figure 4: style with render information for objects with curve or bounding
box

8 Style information for TextGlyphs

Just as in the case of curves in ReactionGlyphs and Species-
ReferenceGlyphs, TextGlyphs already can be considered to be

31



render information which is located in the layout because a Text-
Glyph already specifies the text to be rendered and it therefore
does not need additional render information in the form of a
text element. On the other hand, it needs render informa-
tion about the font properties the text is to be rendered with.
Just as for the curve object for ReactionGlyphs and Species-
ReferenceGlyphs, this render information is taken from the font
related attributes of the outermost group element of the style
that is used to render a TextGlyph. Any additional information
within the group is ignored. If the group does not specify any
of the font-family, font-size, font-weight, font-style or
text-anchor attributes, the default values are to be used.

9 Uniqueness of IDs

Since local and global render information objects can reference
other render information objects, programs creating render in-
formation need to make sure that all the IDs are unique within
the reference history. In other words, a render information
object that references another render information object must
make sure that none of its IDs is equal to an ID in any of the
directly or indirectly referenced render information objects. An
exception to this rule is to create e.g. a color definition with
the same ID as the color definiton in a referenced style in this
case interpreting programs can assume that this color definition
is supposed to override a color definition in a referenced ren-
der information object. Likewise it is also possible to override
a color definition with a gradient and vice versa, line ending
definitions should only be overridden with other line ending def-
initions however.

32



10 Appendix A

Position of line end: O(xO, yO, zO)

Normalized slope vector at end: ~S =


dxs

dys

dzs



Orthogonal vector to ~S with z = 0:

dxs ∗ x2 + dys ∗ y2 = 0

dxs ∗ x2 = −dys ∗ y2

x2 = −dys ∗ y2

dxs

Choosing y2 = 1 ⇒ x2 = − dys

dxs

~V2 = (− dys

dxs
, 1, 0)

Normalize ~V2: Length of ~V2: l~V2
=

√(
− dys

dxs

)2
+ 1

~V2N =


− dys

dxs∗
√
− dys

dxs

2
+1

1√
− dys

dxs

2
+1

0


Retain right handed coordinate system:

~V2N =


SGN(dxs) ∗ − dys

dxs∗
√

(− dys
dxs )

2
+1

SGN(dxs) ∗ 1√
(− dys

dxs )
2
+1

0


SGN(x) is defined as:

33



SGN(x) =


1 for x > 0
0 for x = 0
−1 for x < 0

Calculation of the third vector:

~V3N = ~S × ~V2N

=

 dxs

dys

dzs

×


SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

SGN(dxs) ∗ 1√
− dys

dxs

2
+1

0



=


dys ∗ 0− dzs ∗ SGN(dxs) ∗ 1√

− dys
dxs

2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

− dxs ∗ 0

dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1



=


−dzs ∗ SGN(dxs) ∗ 1√

− dys
dxs

2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1



Now we have to map the line endings coordinate system to the coordinate
system specified by ~S, ~V2N and ~V3N . This basically involves rotations around
the x,y and z axis of the line endings coordinate system:

T ·

 1 0 0
0 1 0
0 0 1

 =
(
~S ~V2N

~V3N

)

T =


dxs SGN(dxs) ∗ − dys

dxs∗

√(
− dys

dxs

)2
+1

−dzs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

dys SGN(dxs) ∗ 1√(
− dys

dxs

)2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√

− dys
dxs

2
+1

dzs 0 dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√

− dys
dxs

2
+1


And last but not least, we have to translate the coordinate system to the

endpoint of the curve. So the overall transformation to map a point P (x, y, z)
in the line endings coordinate system to the curve is:

PT = (T · P ) + O

34



PT =

T ·

 x
y
z


+

 xO

yO

zO


Let D = 1√

(− dys
dxs

)
2
+1

T =

 dxs SGN(dxs) ∗ − dys
dxs

∗D −dzs ∗ SGN(dxs) ∗D xO

dys SGN(dxs) ∗D dzs ∗ SGN(dxs) ∗ − dys
dxs∗

∗D yO

dzs 0 dxs ∗ SGN(dxs) ∗D − dys ∗ SGN(dxs) ∗ − dys
dxs

∗D zO

0 0 0 1



PT =

 dxs SGN(dxs) ∗ − dys
dxs

∗ D −dzs ∗ SGN(dxs) ∗ D xO

dys SGN(dxs) ∗ D dzs ∗ SGN(dxs) ∗ − dys
dxs

∗ D yO

dzs 0 dxs ∗ SGN(dxs) ∗ D − dys ∗ SGN(dxs) ∗ − dys
dxs

∗ D zO

0 0 0 1

·

(
x
y
z
1

)

35


