
Including Layout Information in SBML Files
Version 2.1.2

Ralph Gauges, Ursula Rost, Sven Sahle and Katja Wegner
European Media Laboratory
Schloss-Wolfsbrunnen Weg 33

69118 Heidelberg
Germany

April 13, 2005



Introduction

With SBML there now is a common standard for the exchange of dynamical
systems data which has already been adopted by many applications in this
field [1, 2, 3]. Since SBML had no means of storing layout information for
reaction networks, we developed an extension to SBML that would allow us
to store this layout information in SBML files. This extension was presented
on the SBML workshop in St. Louis (November 2003). According to the
discussion at the workshop some simplifications were made to this proposal.
This simplified version is presented here.

Design principles and general structure

The overall structure of this proposal reflects some design decisions that will
be explained in this paragraph. These decisions are mainly based on the
discussion on the mailing list and during the workshop in St. Louis.

First it was requested that it should be possible to have several layouts
in one SBML file. This leads to the obvious choice to have a listOfLayouts
outside the model part of the SBML file instead of direct annotations to the
model elements.

We think it is important that dealing with this SBML extension should
be as easy as possible. This leads us to some other decisions:

The layout of a reaction network diagram should be described as graphical
representations of species and reactions (and not as some arbitrary drawing
or graph). This means that existing languages for the description of vector
drawings (SVG) or general graphs cannot be used. While it may seem un-
necessary to invent a new language when an existing one like SVG could in
principle be used to describe the layout of a reaction network we think there
are good reasons to have a language tailored specifically for the layout of
SBML models. Presumably most programs that will use this SBML exten-
sion are primarily programs dealing with biochemical models. So internally
most programs will have data structures like species and reactions (this is
obviously also the reason why SBML is structured that way). So for these
programs it is natural to describe the layout of the reaction network also in
terms of species and reactions (and not in terms of polygons or splines). This
leads to the layout object having a structure very similar to the structure of
an SBML model object. It basically contains lists of graphical representa-
tions of compartments, species, and reactions (called compartmentGlyph,
speciesGlyph, and reactionGlyph respectively).

Another important question is the level of detail that the description

1



should provide. For simplicity we focus only on the layout of the diagram,
not the details of how it should be rendered. This means basically the position
of the different graphical objects on the screen or on paper is given. As an
illustration consider the following figure:

Figure 1: Illustration of different renderings of the same layout

All three diagrams could be renderings of the same layout and would be
described by identical SBML files. No information about colors, line styles,
fonts, etc., is present in the layout description as we propose it.

The next question is how the relation between the model and the layout
should be established. There seems to be consensus that one model element
can be represented by several layout elements. For example it can be useful
to have several representations of one species in the layout to avoid lots of
crossing arrows. This can be accomplished if every layout element has a field
that refers to the id of a model element.

2



We also think that there are cases where a layout element does not corre-
spondent to exactly one model element. This could occur if the layout shows
a simplified version of the model where one reaction in the layout correspon-
dents to several reactions and intermediate species in the model. This is the
reason why the field in the layout elements that refers to the model elements
is optional, allowing layout objects that do not have one specific counterpart
in the SBML model.

The result of all this is a way to describe a graphical layout of a reac-
tion network in biochemical terms. This layout can be closely tied to the
biochemical model. A graphical model editor for example would typically
create a layout that is closely connected (by a one-to-several relation from
the model elements to the layout elements) to the model. A more general
layout design program could also create a layout that is not so closely tied
to the model, for example it could create a layout that shows a simplified
version of the model.

All size information given for layout objects are understood to be Pt,
which is defined to be 1/72 of an inch.

Nomenclature

The UML diagrams in this document show the name of the class on top.
Below are the attributes specific to that class. Optional attributes have some
default value which may be NULL. Arrays are written in square brackets
where with the valid array length within those brackets. So a array [2..]
would mean that it can hold from 2 to ∞ number of objects (assuming that
you have some very large harddisk).

Inheritance tree

Figure 2 shows the relations between the different objects. Inheritance rela-
tions are shown as well as which object contains which other objects.

Namespace

For the extensions we use a separate namespace of the following form
xmlns:sl2=”http://projects.eml.org/bcb/sbml/level2”. An SBML file that
would utilize the extension could have the following form:

3



Figure 2: Containment and inheritance tree for the layout classes

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns:sbml="http://www.sbml.org/sbml/level2" level="2" \\

version="1"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level2
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">

Metainformation

All the layout classes below are derived from a class called SBase which was
taken from the SBML Level 2 schema specification
(http://www.sbml.org/sbml/level2/version1/). This enables programs to store
metainformation with the layout objects.

4



SBase

metaid : ID {use=”optional”}
notes : (ANY : {namespace=”http://www.w3.org/1999/xhtml”}) {minOccurs=”0”}
annotation : (ANY) {minOccurs=”0”}

XML Schema representation:

<xsd:complexType name="SBase" abstract="true">
<xsd:sequence>
<xsd:element name="notes" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml"

processContents="skip"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="annotation" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>
</xsd:complexType>

Coordinate System

The layout extension uses a Cartesian coordinate system. The origin of the
coordinate system will be in the upper left corner of the screen. The positive
x-axis runs from left to right, the positive y-axis run from top to bottom
and the positive z-axis points into the screen. The reason to have the origin
in the upper left corner of the screen is that most 2D daring packages do it
that way. This coordinate system is also right handed just like the ones in
OpenGL and Java3D, which should facilitate 3D implementations as well.
For printing purposes a point in this coordinate system is presumed to be
1/72 of an inch (0.3527777778 mm) as in postscript.

5



<listOfLayouts > and <layout >

All layout information is stored in a tag called listOfLayouts which is placed
within the annotation tag of the model tag. This list can hold one or more
layout objects which in turn hold layout information for some or all elements
of the sbml model plus additional objects that need not be connected to the
model. In the <layout > tag an id which uniquely identifies it and the di-
mensions of the bounding box have to be specified. The dimensions of the
bounding box are given as a width, height and an optional depth attribute,
all of type double. If not specified, the depth value defaults to 0.0. Ids are
defined to be the same as SId in SBML Level 2. The actual layout elements
are contained in several lists in the <layout > tag, namely a ListOfCom-
partmentGlyphs, a ListOfSpeciesGlyphs, a ListOfReactionGlyphs,
a ListOfTextGlyphs, and a ListOfAdditionalGraphicalElements.

ListOfLayouts

layouts : Layout[1..∗]

Layout

id : SId {use=”required”}
dimensions : Dimensions {use=”required”}
compartmentGlyphs : CompartmentGlyph[0..∗]
speciesGlyphs : SpeciesGlyph[0..∗]
reactionGlyphs : ReactionGlyph[0..∗]
textGlyphs : TextGlyph[0..∗]
additionalGraphicalObjects : GraphicalObject[0..∗]

XML Schema representation:

<xsd:complexType name="ListOfCompartmentGlyphs">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="compartmentGlyph" type="CompartmentGlyph"

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfSpeciesGlyphs">
<xsd:complexContent>
<xsd:extension base="SBase">

6



<xsd:sequence>
<xsd:element name="speciesGlyph" type="SpeciesGlyph"

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfReactionGlyphs">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="reactionGlyph" type="ReactionGlyph"

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfTextGlyphs">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="textGlyph" type="TextGlyph" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfAdditionalGraphicalObjects">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="additionalGlyph" type="GraphicalObject"

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Layout">
<xsd:sequence>
<xsd:element name="dimensions" type="Dimensions" />
<xsd:element name="listOfCompartmentGlyphs" type="ListOfCompartmentGlyphs"

minOccurs="0"/>
<xsd:element name="listOfSpeciesGlyphs" type="ListOfSpeciesGlyphs"

minOccurs="0"/>
<xsd:element name="listOfReactionGlyphs" type="ListOfReactionGlyphs"

minOccurs="0"/>

7



<xsd:element name="listOfTextGlyphs" type="ListOfTextGlyphs"
minOccurs="0"/>

<xsd:element name="listOfAdditionalGraphicalObjects"
type="ListOfAdditionalGraphicalObjects" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="id" type="SId"/>

</xsd:complexType>

<xsd:complexType name="ListOfLayouts">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="layout" type="Layout" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="listOfLayouts" type="ListOfLayouts"/>

<GraphicalObject>

Most objects for which layout information is to be included in an SBML file
have a corresponding object in the SBML model. As there might be cases
where the user wants to include object types in the layout that do fall in
any of the other categories described below, we include a listOfAdditional-
GraphicalObjects in each layout object. This list holds an arbitrary number
of graphicalObject elements. The graphicalObject basically defines a
bounding box in a specific place in the layout without giving additional
information about its contents. All the more specific layout elements (Com-
partmentGlyph, SpeciesGlyph, ReactionGlyph, TextGlyph, and SpeciesRef-
erenceGlyph) are derived from graphicalObject.

The GraphicalObject has an id attribute of type SId through which it
can be identified. Each GraphicalObject has an element called boundingBox,
which specifies the position and the size of the object. Each BoundingBox
has an element called position which is of type Point and an element called
dimensions of type Dimensions. The position always specifies the upper
left corner of the bounding box. Additionally BoundingBox has an optional
attribute id that can be used to identify and reference the BoundingBox
object. The Point element has four attributes. The first attribute id is
optional and can be used to identify a point object. The other three attributes
are called x, y and z and they specify the x- ,y- and z-coordinate of the point.

8



The z coordinate is optional and defaults to 0.0. Likewise the Dimensions
element has an attribute id, which is optional and the attributes width, height
and depth. The width specifies the size of the object in the direction of the
positive x axis, the height attribute specifies the size of the object along the
positive y axis and the depth attribute specifies the size of the object along
the positive z axis. Again, the depth attribute is optional and defaults to
0.0. All sizes for Dimension objects are positive values.

Programs can use annotations to graphicalObjects in the listOfGraph-
icalObjects to describe program specific graphical objects.

Point

id : SId {use=”optional”}
x : double

y : double

z : double {use=”optional” default=”0.0”}

Dimensions

id : SId {use=”optional”}
width : double

height : double

depth : double {use=”optional” default=”0.0”}

BoundingBox

id : SId {use=”required”}
position : Point

dimensions : Dimensions

GraphicalObject

id : SId {use=”required”}
boundingBox : BoundingBox

XML Schema representation:

<xsd:complexType name="Point">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="id" type="SId" use="optional" />
<xsd:attribute name="x" type="xsd:double" />
<xsd:attribute name="y" type="xsd:double" />
<xsd:attribute name="z" type="xsd:double" use="optional" default="0.0" />
</xsd:extension>

</xsd:complexContent>

9



</xsd:complexType>

<xsd:complexType name="Dimensions">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:attribute name="id" type="SId" use="optional" />
<xsd:attribute name="width" type="xsd:double" />
<xsd:attribute name="height" type="xsd:double" />
<xsd:attribute name="depth" type="xsd:double" use="optional" default="0.0" />
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BoundingBox">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="position" type="Point"/>
<xsd:element name="dimensions" type="Dimensions/>

</xsd:sequence>
<xsd:attribute name="id" type="SId" use="optional" />
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="GraphicalObject">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="boundingBox" type="BoundingBox" />

</xsd:sequence>
<xsd:attribute name="id" type="SId"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<Compartment> Layout Information

The CompartmentGlyph class is derived from GraphicalObject and has the
same attributes. Additionally it has an optional reference to the id of the
corresponding compartment in the model. Since the compartment id is op-
tional, the user can specify compartments in the layout that are not part of
the model.

CompartmentGlyph

compartment : SId {use=”optional”}

10



XML Schema representation:

<xsd:complexType name="CompartmentGlyph">
<xsd:complexContent>
<xsd:extension base="GraphicalObject">
<xsd:attribute name="compartment" type="SId" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<listOfCompartmentGlyphs>

<compartmentGlyph id="cGlyph" compartment="compartment" >
<boundingBox>
<position x="10.0" y="10.0" />
<dimensions width="60.0" height="50.0" />

</boundingBox>
</compartmentGlyph>

</listOfCompartmentGlyphs>
.
.
.
<compartment id="compartment" size="1.0"/>
.
.
.

<Species> Layout Information

Since an sbml document can contain species that don’t appear in any re-
action a species can have zero or more representations on screen which are
represented by <speciesGlyph> and are grouped in a <listOfSpeciesGlyphs>
tag. In addition to the attributes from GraphicalObject, the speciesGlyph
object has a species attribute which is the id of the corresponding species
object in the model. The species attribute is optional to allow the program
to specify species representations that do not have a direct correspondence
in the model. This might be useful if some pathway has been collapsed, but
is still treated by layout programs.

XML Schema representation:

<xsd:complexType name="SpeciesGlyph">

11



SpeciesGlyph

species : SId {use=”optional”}

<xsd:complexContent>
<xsd:extension base="GraphicalObject">
<xsd:attribute name="species" type="SId" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<listOfSpeciesGlyphs>
<speciesGlyph id="ATP_Glyph" species="ATP">
<boundingBox>
<position x="295.0" y="123.0" />
<dimensions width="16.0" height="8.0" />

</boundingBox>
</speciesGlyph>

.

.

.
</listOfSpeciesGlyphs>

.

.

.
<species id="ATP" compartment="compartment" initialAmount="0">

.

.

.

<Reaction> Layout Information

Reactions are represented by a reactionGlyph object in the layout. Since
this is also a subclass of graphicalObject it inherits a bounding box. Just
like the other glyphs also the reactionGlyph has a reaction attribute that
specifies the id of the corresponding reaction in the model. Again, this ref-
erence is optional.

Since one species can have several graphical representations in the layout
there must be a way to specify which speciesGlyph should be connected to
the reactionGlyph. For this reason there is a listOfSpeciesReferenceG-
lyphs (see below) in the reactionGlyph.

12



Since the dimensions of a bounding box can no longer be negative, an
optional curve attribute was added to ReactionGlyph. This Curve object
(see decription below) can be used to describe a curve representation for the
ReactionGlyph. If a ReactionGlpyh specifies a curve, the bounding box is to
be ignored.

ReactionGlyph

reaction : SId {use=”optional”}
curve : Curve {use=”optional”}
speciesReferences : SpeciesReferenceGlyph[1..∗]

XML Schema representation:

<xsd:complexType name="ListOfSpeciesReferenceGlyphs">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="speciesReferenceGlyph" type="SpeciesReferenceGlyph"

minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ReactionGlyph">
<xsd:complexContent>
<xsd:extension base="GraphicalObject">
<xsd:sequence>
<xsd:element name="curve" type="Curve" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:sequence>
<xsd:element name="listOfSpeciesReferenceGlyphs"

type="ListOfSpeciesReferenceGlyphs"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="reaction" type="SId" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

example:

.

.

.
<listOfReactionGlyphs>

13



<reactionGlyph id="reaction_0_Glyph" reaction="reaction_0" >
<curve>
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">

<start x="119.0" y="166.0" />
<end x="239.0" y="349.0" />

</curveSegment>
</listOfCurveSegments>

</curve>
</reactionGlyph>

.

.

.
</listOfReactionGlyphs>

.

.

.
<reaction id="reaction_0" reversible="false">
<listOfReactants>

<speciesReference species="P_i" stoichiometry="1"/>
.
.
.

</reaction>
.
.
.

<SpeciesReference> Layout Information

The graphical connection between a speciesGlyph and a reactionGlyph (which
would be an arrow or some curve in most cases) is represented by the species-
ReferenceGlyph object. A listOfSpeciesReferenceGlyphs is contained
in a reactionGlyph.

SpeciesReferenceGlyph

speciesGlyph : SId {use=”optional”}
speciesReferences : SpeciesReferenceGlyph {use=”optional”}
role : SpeciesReferenceRole {use=”optional” default=”UNDEFINED”}
curve : Curve {use=”optional”}

The speciesReferenceGlyph has a speciesGlyph attribute that con-
tains the id of a speciesGlyph object that is to be connected to the reac-
tionGlyph. The speciesReference attribute refers to a speciesReference

14



(or a modifierSpeciesReference) in the model and is optional. Since species
references in sbml level 1 as well as level 2 do not have ids, we choose to put a
new tag called id which has an attribute called id that is of type SId into the
annotation part of the corresponding SpeciesReference element. This tag has
to be unique within the global namespace of the SBML model and can thus
be used to reference a given species reference. In a later version of SBML
the speciesReferences should have an id.

This id defines a relation between a speciesReferenceGlyph and the corre-
sponding speciesReference or modifierSpeciesReference in the model. From
that we can also deduce what role a certain species plays in the reaction
(whether it is a substrate or product or something else). Since this connec-
tion from the diagram to the model is optional there are cases where the
role of the species can not be derived in that way. For that we propose an
optional role attribute. This can be used to provide the role of a metabolite
in the reaction as a string. There was some discussion in St. Louis whether
something like this is necessary, so this attribute might get dropped in later
revisions.

So far we have defined which graphical objects should be connected to the
reaction glyph. This is the minimum information that a render program with
biochemical knowledge needs to render the reaction layout. The standard
way to render this connection would be a straight line. In most cases the
relation of a species to a reaction will be graphically represented by a curve.
In this case a curve tag that contains a listOfCurveSegments can be
used. The listOfCurveSegments contains an arbitrary number of curve
segments. For now we provide the definitions for two types of curve segments
(LineSegment and CubicBezier) but leave it open if this should in future
be restricted to only one type or even generalized to more different line types.
CubicBezier is a direct subclass of LineSegment. The type of the curve
segment has to be specified with a xsi:type attribute in the curveSegment
tag (xsi:type=LineSegment or xsi:type=CubicBezier). The SpeciesReference
should either contain a bounding box or a curve specification, if both are
given, the bounding box should be ignored.

The LineSegment object consists of two elements of type Point. One is
called start and it is the starting point of the line, the other is called end
and it specifies the endpoint of the line. As mentioned above, CubicBezier
is derived from LineSegment, so it consists of the same two elements start
and end, which again specify the starting point and the endpoint of the
CubicBezier curve. The two elements basePoint1 and basePoint2 specify the
two additional basepoints that are needed to describe a CubicBezier curve.
basePoint1 is the basepoint closer to the start point. This way, programmers
who do not want to implement CubicBezier curves can just treat them as

15



straight lines and ignore the basepoints.

Curve

curveSegments : LineSegment[1..∗]

LineSegment

start : Point

end : Point

CubicBezier

basePoint1 : Point {use=”optional”}
basePoint2 : Point {use=”optional”}

The role attribute is used to specify how the species reference should be
displayed. Allowed values are substrate, product, sidesubstrate, sideproduct,
modifier, activator and inhibitor. This attribute is optional and should only
be necessary if the optional speciesReference attribute is not given or if the
respective information from the model needs to be overridden. The values
substrate and product are used if the species reference is a main product or
substrate in the reaction. sidesubstrate and sideproduct are used for stuff
like ATP, NAD+, etc. that some renderers might choose to display as side
reactions. activator and inhibitor are modifiers where their influence on
the reaction is known and modifier is a more general term if the influence is
unknown or changes during the course of the simulation. This list is probably
not exhaustive and will be updated as needed. Future versions of SBML may
very well have an id for the SpeciesReference objects as well as some kind
of role attribute. If this is the case, we will drop both attributes here since
they are no longer necessary.

XML Schema representation:

<xsd:complexType name="LineSegment">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>

<xsd:element name="start" type="Point" />
<xsd:element name="end" type="Point" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="CubicBezier">

16



<xsd:complexContent>
<xsd:extension base="LineSegment">

<xsd:element name="basePoint1" type="Point" minOccurs="0" />
<xsd:element name="basePoint2" type="Point" minOccurs="0" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfCurveSegments">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="curveSegment" type="LineSegment"

minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Curve">
<xsd:complexContent>
<xsd:extension base="SBase">
<xsd:sequence>
<xsd:element name="listOfCurceSegments" type="ListOfCurveSegments"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="RoleString">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="substrate"/>
<xsd:enumeration value="product"/>
<xsd:enumeration value="sidesubstrate"/>
<xsd:enumeration value="sideproduct"/>
<xsd:enumeration value="modifier"/>
<xsd:enumeration value="activator"/>
<xsd:enumeration value="inhibitor)"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="SpeciesReferenceGlyph">
<xsd:complexContent>
<xsd:extension base="GraphicalObject">
<xsd:sequence>
<xsd:element name="curve" type="Curve" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="speciesGlyph" type="SId" use="optional"/>
<xsd:attribute name="speciesReference" type="SId" use="optional"/>

17



<xsd:attribute name="role" type="RoleString" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<speciesGlyph id="P_iGlyph" species="P_i_s1" >
<boundingBox>
<position x="0.0" y="1.8" />
<dimensions width="1.0" height="1.0" />

</boundingBox>
</speciesGlyph>

.

.

.
<reactionGlyph id="reaction_0_Glyph" reaction="reaction_0" >

<curve>
<listOfCurveSegments>

<curveSegment xsi:type="LineSegment">
<start x="2.3" y="1.0" />
<end x="3.0" y="1.0" />

</curveSegment>
</listOfCurveSegments>

</curve>
</reactionGlyph>
<listOfSpeciesReferenceGlyphs>
<speciesReferenceGlyph id="SP1_Glyph" speciesGlyph="P_iGlyph"

speciesReference="P_i_sr1">
<curve>
<listOfCurveSegments>
<curveSegment xsi:type="CubicBezier">
<start x="0.0" y="1.8" />
<end x="0.3" y="0.8" />
<basePoint1 x="0.1" y="1.9" />
<basePoint2 x="0.3" y="0.7"/>

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="0.3" y="0.8" />
<end x="2.3" y="1.0" />

</curveSegment>
</listOfCurveSegments>

</curve>
</speciesReferenceGlyph>

.

.

18



.
</listOfSpeciesReferenceGlyphs>

</reactionGlyph>
.
.

TextLabels

When dealing with text labels we basically have two possibilities: Either let
the program decide whether and where to put text labels, or specify it in
the sbml file. Since it was argued that the positioning of text labels to avoid
collisions with other layout elements was an integral part of the layout we do
provide a way to specify the labels.

A listOfTextGlyphs in the layout class contains an arbitrary number of
TextGlyphs. Each TextGlyph describes one text label. This can be just
an independent text like a title or comment to the diagram, in this case only
the text attribute of the TextGlyph should be given (and obviously contain
the text that should be displayed).

An optional graphicalObject attribute contains the SId of any Graph-
icalObject and specifies that the TextGlyph should be considered to be a
label to that object. This could mean the label is moved together with the
object in an editor. Additionally there is another optional attribute called
originOfText which holds the SId of an SBML model object (or any other
object with a name). If this is given the displayed text is taken from the
name attribute of the referenced object. Obviously exactly one of the two
optional attributes (originOfText or text) should be given. If both are given
the text attribute overrides the OriginOfText.

TextGlyph

graphicalObject : SId {use=”optional”}
text : string {use=”optional” default=””}
originOfText : SId {use=”optional”}

XML Schema representation:

<xsd:complexType name="TextGlyph">
<xsd:complexContent>
<xsd:extension base="GraphicalObject">
<xsd:attribute name="graphicalObject" type="SId" use="optional"/>
<xsd:attribute name="text" type="xsd:string" use="optional"/>
<xsd:attribute name="originOfText" type="SId" use="optional"/>
</xsd:extension>

19



</xsd:complexContent>
</xsd:complexType>

Further Plans

This document has undergone many changes and we hope that it has ad-
vanced enough to be considered for inclusion into the next version of the
SBML specification. This specification was intended for the use with sbml
level 2. With some slight changes it can also be used with sbml level 1 doc-
uments. Actually the only major changes that would have to be made is to
change all references to SId to be references to SNames.

Example File

Last but not least, we include a small sample file to illustrate and com-
plement the paragraphs above. Note that both the picture and the example
code were manually modified. There does not exist an actual implementation
of this latest version of our proposal yet. The model consists of two reac-
tions. Which are the first reaction of glycolysis where glucose is converted
to glucose-6-phosphate (G6P) and the reverse reaction of gluconeogenesis
where glucose-6-phosphate is hydrolyzed to glucose. We did not include any
coordinates in the third dimension, since we are only working in 2D space
so far. As can be seen in the screenshot, the glucose SpeciesReference has
two representational objects on screen whereas glucose-6-phosphate only has
one. This difference is reflected in the file where the glucose species has two
nodes in the listOfNodes whereas G6P only has one. This example shows
not all but only the main features of our proposal.

Figure 3: One possible rendering of the example layout.

20



<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">
<model id="TestModel">
<annotation>
<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<layout id="Layout_1">
<dimensions width="400" height="220">
</dimensions>
<listOfCompartmentGlyphs>
<compartmentGlyph id="CompartmentGlyph_1" compartment="Compartment_1">
<boundingBox id="bb1">
<position x="5" y="5">
</position>
<dimensions width="390" height="210">
</dimensions>

</boundingBox>
</compartmentGlyph>

</listOfCompartmentGlyphs>
<listOfSpeciesGlyphs>
<speciesGlyph id="SpeciesGlyph_1" species="Species_1">
<boundingBox id="bb2">
<position x="80" y="26">
</position>
<dimensions width="240" height="24">
</dimensions>

</boundingBox>
</speciesGlyph>
<speciesGlyph id="SpeciesGlyph_2" species="Species_2">
<boundingBox id="bb3">
<position x="80" y="170">
</position>
<dimensions width="240" height="24">
</dimensions>

</boundingBox>
</speciesGlyph>

</listOfSpeciesGlyphs>
<listOfReactionGlyphs>
<reactionGlyph id="ReactionGlyph_1" reaction="Reaction_1">
<curve>
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="165" y="105">
</start>
<end x="165" y="115">
</end>

</curveSegment>
</listOfCurveSegments>

</curve>

21



<listOfSpeciesReferenceGlyphs>
<speciesReferenceGlyph id="SpeciesReferenceGlyph_1"

speciesReference="SpeciesReference_1" speciesGlyph="SpeciesGlyph_1"
role="1">

<curve>
<listOfCurveSegments>
<curveSegment xsi:type="CubicBezier">
<start x="165" y="105">
</start>
<end x="195" y="60">
</end>
<basePoint1 x="165" y="90">
</basePoint1>
<basePoint2 x="165" y="90">
</basePoint2>

</curveSegment>
</listOfCurveSegments>

</curve>
</speciesReferenceGlyph>
<speciesReferenceGlyph id="SpeciesReferenceGlyph_2"

speciesReference="SpeciesReference_2" speciesGlyph="SpeciesGlyph_2"
role="2">

<curve>
<listOfCurveSegments>
<curveSegment xsi:type="CubicBezier">
<start x="165" y="115">
</start>
<end x="195" y="160">
</end>
<basePoint1 x="165" y="130">
</basePoint1>
<basePoint2 x="165" y="130">
</basePoint2>

</curveSegment>
</listOfCurveSegments>

</curve>
</speciesReferenceGlyph>

</listOfSpeciesReferenceGlyphs>
</reactionGlyph>
<reactionGlyph id="ReactionGlyph_1" reaction="Reaction_2">
<curve>
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="235" y="105">
</start>
<end x="235" y="115">
</end>

</curveSegment>
</listOfCurveSegments>

22



</curve>
<listOfSpeciesReferenceGlyphs>
<speciesReferenceGlyph id="SpeciesReferenceGlyph_3"

speciesReference="SpeciesReference_3" speciesGlyph="SpeciesGlyph_2"
role="1">

<curve>
<listOfCurveSegments>
<curveSegment xsi:type="CubicBezier">
<start x="235" y="115">
</start>
<end x="205" y="160">
</end>
<basePoint1 x="235" y="130">
</basePoint1>
<basePoint2 x="235" y="130">
</basePoint2>

</curveSegment>
</listOfCurveSegments>

</curve>
</speciesReferenceGlyph>
<speciesReferenceGlyph id="SpeciesReferenceGlyph_4"

speciesReference="SpeciesReference_4" speciesGlyph="SpeciesGlyph_1"
role="2">

<curve>
<listOfCurveSegments>
<curveSegment xsi:type="CubicBezier">
<start x="235" y="105">
</start>
<end x="205" y="60">
</end>
<basePoint1 x="235" y="90">
</basePoint1>
<basePoint2 x="235" y="90">
</basePoint2>

</curveSegment>
</listOfCurveSegments>

</curve>
</speciesReferenceGlyph>

</listOfSpeciesReferenceGlyphs>
</reactionGlyph>

</listOfReactionGlyphs>
<listOfTextGlyphs>
<textGlyph id="TextGlyph_01" graphicalObject="SpeciesGlyph_1"

originOfText="SpeciesGlyph_1">
<boundingBox id="bbA">
<position x="92" y="26">
</position>
<dimensions width="228" height="24">
</dimensions>

23



</boundingBox>
</textGlyph>
<textGlyph id="TextGlyph_02" graphicalObject="SpeciesGlyph_2"

originOfText="SpeciesGlyph_2">
<boundingBox id="bbB">
<position x="92" y="170">
</position>
<dimensions width="228" height="24">
</dimensions>

</boundingBox>
</textGlyph>

</listOfTextGlyphs>
</layout>

</listOfLayouts>
</annotation>
<listOfCompartments>
<compartment id="Compartment_1"/>

</listOfCompartments>
<listOfSpecies>
<species id="Species_1" compartment="Compartment_1"/>
<species id="Species_2" compartment="Compartment_1"/>

</listOfSpecies>
<listOfReactions>
<reaction id="Reaction_1" reversible="false">
<listOfReactants>
<speciesReference species="Species_1">
<annotation>
<layoutId xmlns="http://projects.eml.org/bcb/sbml/level2"

id="SpeciesReference_1"/>
</annotation>

</speciesReference>
</listOfReactants>
<listOfProducts>
<speciesReference species="Species_2">
<annotation>
<layoutId xmlns="http://projects.eml.org/bcb/sbml/level2"

id="SpeciesReference_2"/>
</annotation>

</speciesReference>
</listOfProducts>

</reaction>
<reaction id="Reaction_2" reversible="false">
<listOfReactants>
<speciesReference species="Species_2">
<annotation>
<layoutId xmlns="http://projects.eml.org/bcb/sbml/level2"

id="SpeciesReference_3"/>
</annotation>

</speciesReference>

24



</listOfReactants>
<listOfProducts>
<speciesReference species="Species_1">
<annotation>
<layoutId xmlns="http://projects.eml.org/bcb/sbml/level2"

id="SpeciesReference_4"/>
</annotation>

</speciesReference>
</listOfProducts>

</reaction>
</listOfReactions>

</model>
</sbml>

Contact Information

To contact any of the authors, send an email to:
FIRSTNAME.LASTNAME@eml-r.villa-bosch.de
e.g.
ralph.gauges@eml-r.villa-bosch.de

Todo

• We need many more examples with nice pictures to go with them. This
probably has to wait until the implementation is finished.

• Implement this proposal on top of libsbml with wrappers for Java,
Python and C++

List Of Changes

Version 2.1.2

• replaced the sample file and the figure for it

Version 2.1.1

• Layout information moved from annotation of the sbml tag to annota-
tion of the model tag.

• Dimensions can only have positive sizes. The standard interpretation
for the bounding box for a reaction glyph was removed. This means

25



that it is no longer possible to guess reaction arrow layout from the
direction of the bounding box of a reaction. Now if there is to be
a reaction arrow, a SpeciesReferenceGlyph for that arrow has to be
specified.

• Due to dimensions being only positive, there was no way to specify
how a reaction glyph should be drawn. Therefor, we added an optional
curve attribute to ReactionGlyph. Since this is the same attribute as
in the SpeciesReferenceGlyph, it should not pose to much additional
work for an implementation.

• Changed all examples to show layout information before model infor-
mation due to the fact that the annotation has to come at the beginning
of an element.

• Some cosmetics concerning the UML diagrams and some rephrasing to
make certain paragraphs more clear.

Version 2.1

• Added a new section about the coordinate system.

• Added new Point, Dimensions and BoundingBox objects in the section
of GraphicalObject

• Changed GraphicalObject to use a BoundingBox to specify the position
and the size.

• Changed curve definitions to take advantage of the new point object.

• Layout objects are now specified without sl2 tags. Just the listOfLay-
outs tag get the namespace attribute. (This is the way it is done for
MathML.)

• Changed the Layout object to use the new Dimensions element to spec-
ify the size of the layout instead of attributes.

Version 2.0

• This version has been simplified by removing groups and the render
part completely (as discussed in St. Louis).

• A TextGlyph has been introduced.

• Updates on the documentation

26



Version 1.2

• Group class has been renamed to LayoutGroup to avoid future conflict
with the abstract Group class of the render part

• This documents contains some new attributes to objects that are needed
to connect this layout information part to the actual render informa-
tion. All Glyph objects are now derived from GraphicalObject. Graph-
icalObject has the information for a bounding box and the reference to
the id of the connected render object. A transformation to transform
the render object prior to rendering can be given as well. GraphicalOb-
ject is also used in the listOfAdditionalGraphicalObjects to specify ob-
jects to include in the layout that have nothing to do with a chemical
model. It could for example be used to draw some legend.

• We took the Transformation, SimpleTransformation and AffineTrans-
formation from the render document and included them here as well
since they are needed for GraphicalObject (see last point.)

• Since ReactionGlyph is now derived from GraphicalObject, the two
points specified now have the notation of a bounding box and they can
be seen as such. On the other hand, programs can still interpret them
as two pseudo nodes as was the default so far. Maybe there should be
a tag that specifies which it is.

• SpeciesReferenceGlyph, derived from GraphicalObject now includes all
the attributes to specify a bounding box. Additionally it can hold a
Curve object which overrides the information on the bounding box.

Version 1.1b

• Document now states that the default unit for the diagram is pt.

• Layout object gets three attributes width, height and depth.

Version 1.1a

• Curve Segments can now hold 3D information.

Version 1.1

• Added new edge information to the speciesReferenceGlyph. Edges can
now be build from lists of straight lines and cubic bezier segments.

27



• Added the possibility of grouping of several graphical representations.
These groups can then be used in the graphical representation instead
of a SpeciesReferenceGlyph.

• Changed all tag names ending with GR(s) to to names ending with
Glyph(s)

• Dropped refRole attribute from SpeciesReferenceGlyph in favor of an
id in the annotations of the SpeciesReference.

• Changed refSpeciesGlyph attribute to ref so it is more consistent with
the rest of the layout objects.

• Fixed the screenshot and corresponding example to correct the error in
the pathway. Sample included does still not fully represent the screen-
shot with this new specification.

• speciesReferences can now be referenced by the speciesReference at-
tribute of the speciesReferenceGlyph. The species reference id that is
needed for this is added into the annotations tag of the speciesReference
tag in the model.

• The naming of references is now more sbml like since the attributes are
called after the object they reference.

References

[1] System Biology Markup Language Level 1 Website
(http://www.sbml.org/sbml/docs/index.html)

[2] Michael Hucka, Andrew Finney, Herbert Sauro, Hamid
Bolouri: Systems Biology Markup Language (SBML) Level
1: Structures and Facilities for Basic Model Definitions
(http://www.sbml.org/sbml/docs/papers/sbml-level-1/html/sbml-
level-1.html)

[3] Hucka M., Finney A., Sauro H.M., Bolouri H., Doyle J.C., Kitano H.,
Arkin A.P., Bornstein B.J., Bray D., Cornish-Bowden A., Cuellar A.A.,
Dronov S., Gilles E.D., Ginkel M., Gor V., Goryanin I.I., Hedley W.J.,
Hodgman T.C., Hofmeyr J.H., Hunter P.J., Juty N.S., Kasberger J.L.,
Kremling A., Kummer U., Le Novere N., Loew L.M., Lucio D., Mendes
P., Minch E., Mjolsness E.D., Nakayama Y., Nelson M.R., Nielsen P.F.,
Sakurada T., Schaff J.C., Shapiro B.E., Shimizu T.S., Spence H.D.,

28



Stelling J., Takahashi K., Tomita M., Wagner J., Wang J. (2003) The
systems biology markup language (SBML): a medium for representa-
tion and exchange of biochemical network models, Bioinformatics, 19,
524-31.

[4] JDesigner Website (http://www.cds.caltech.edu/ hsauro/JDesigner.htm)

[5] Herbert Sauro: JDesigner SBML Annotation
(http://www.cds.caltech.edu/ hsauro/JDSBMLEx.pdf )

29


