
Including Render Information to SBML
Layouts

Version 0.2

Ralph Gauges, Ursula Rost, Sven Sahle and Katja Wegner
European Media Laboratory
Schloss-Wolfsbrunnen Weg 33

69118 Heidelberg
Germany

October 28, 2003

Introduction

This document is meant to complement the SBML Layout extension docu-
ment presented earlier (http://projects.villa-bosch.de/bcb/sbml/) with ren-
der information for the layout objects. The ideas that went into this render
extension are mostly the same as described in the layout extension. We
wanted this extension to be as flexible as possible. In order for the user to
make maximal use of defined render objects across several layouts, we choose
to separate the render information completely from the layout information.
Given the early stage of this draft, all name tags should be considered pre-
liminary. Any comments and suggestions on those are always welcome.

Namespace

For the render extensions we use the same namespace as for the layout infor-
mation since we assume that this document will be merged with the layout
extension once it has matured enough. It should be specified as follows:
xmlns:sl2=”http://projects.eml.org/bcb/sbml/level2/”.
A SBML file header that would utilize the extension could have the following
form:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns:sbml="http://www.sbml.org/sbml/level2" level="2"

version="1"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level2
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">

Meta information

Most of the render classes below are derived from a class called SBase which
was taken from the SBML Level 2 schema specification
(http://www.sbml.org/sbml/level2/version1/). This enables programs to store
meta information with the render objects. Most objects do have a unique id
of type SId as well.

XML Schema representation:

<xsd:complexType name="SBase" abstract="true">
<xsd:sequence>
<xsd:element name="notes" minOccurs="0">
<xsd:complexType>

1

Figure 1: SBase class

<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml"

processContents="skip"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="annotation" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>

</xsd:complexType>

<xsd:simpleType name="SId">
<xsd:restriction base="xsd:string">
<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>
</xsd:restriction>

</xsd:simpleType>

Overall structure

As stated above, the render information has been completely separated from
the layout information. It will have a separate tag called render. There is
just one render object per file which contains the rendering information as
a listOfLayouts which can contain one or more layouts. The render tag also
holds two optional attributes called background and foreground. They are
both of type Color and can be used to specify a default background and a
default foreground color for all render objects. (For the specification of the
Color type see the next section.) Each layout object holds several lists: A
listOfFilltypes for a list of possible filltypes, a listOfLinetypes holds all the

2

different line types, a listOfColors will hold a number of predefined color
names which are easier to remember than RGBA values, a listOfShapes for
all the complex and primitive shapes that will eventually be rendered and a
listOfRenderGroups. All shapes are derived from a base class Shape. Shapes
defined so far are curves, text labels, bitmaps and several forms of primitive
shapes like ellipses, rectangle and triangle. The listOfRenderGroups hold
groups of render objects that have been defined in the listOfShapes; this
lets the user compose complex render objects from simple shapes. Those
render groups can than be referenced by the layout part together with a
transformation object that is to be used on the render object.

Figure 2: Inheritance tree for the layout and render classes

XML Schema representation:

<xsd:complexType name="ListOfLinetypes">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="linetype" type="sl2:Linetype"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfFilltypes">

<xsd:complexContent>

3

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="filltype" type="sl2:Filltype" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfShapes">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="shape" type="sl2:Shape" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfRenderGroups">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="group" type="sl2:RenderGroup" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Render">

<xsd:sequence>

<xsd:element name="listOfColors" type="sl2:ListOfColors" minOccurs="0"/>

<xsd:element name="listOfLinetypes" type="sl2:ListOfLinetypes" minOccurs="0"/>

<xsd:element name="listOfShapes" type="sl2:ListOfShapes" minOccurs="0"/>

<xsd:element name="listOfRenderGroups" type="sl2:ListOfRenderGroups" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="background" type="sl2:Color" use="optional">

<xsd:attribute name="foreground" type="sl2:Color" use="optional">

</xsd:complexType>

Colors

A Color object has 5 attributes. The id attribute is used to give a name to
the color object so it can be referenced from other objects. The red, green
and blue attributes specify the value for the red, green and blue channel
respectively. They are integers values in the range of 0 to 255. The alpha
attribute is also an integer value in the range of 0 to 255 and specifies the
transparency of the color. 0 meaning fully transparent and 255 meaning
opaque. The default value for the alpha attribute is 255 (fully opaque).

XML Schema representation:

<xsd:simpleType name="ColorChannel">

<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0"/>

<xsd:maxInclusive value="255"/>

4

Figure 3: Color class

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="Color">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:attribute name="id" type="sl2:SId"/>

<xsd:attribute name="red" type="sl2:ColorChannel"/>

<xsd:attribute name="green" type="sl2:ColorChannel"/>

<xsd:attribute name="blue" type="sl2:ColorChannel"/>

<xsd:attribute name="alpha" type="sl2:ColorChannel" use="optional" default="255"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Linetypes

The listOfLinetypes holds zero or more Linetype objects. A linetype object
has an attribute for the thickness of the line and one for the stroke. So far
we have defined two types of strokes. A SolidStroke which is a normal solid
line and a DashedStroke which is a line made up of little line segments of
variable length interrupted by spaces of variable length. The length of the
dashes and spaces is specified by the sequence attribute which consists of a
list of double values. The values alternately correspond to the length of a
dash followed by the length of a space, followed by the length of the next
dash and so on. If the line that is drawn with such a dashed stroke is longer
than the sequence given, the pattern is repeated until the full length of the
line is reached. The sequence must consists of at least two values since having
only one value would correspond to a solid line and would therefor not make
much sense.

The shapes are normally just drawn as an outline. In order to be able
to fill a shape we have defined one filltype called SingleColorFill. The only
attributes are an id to reference the filltype from other objects and the color
with which the shape should be filled. Other filltypes that might be useful

5

Figure 4: Strokes and Linetypes

are a gradient and a pattern filltype, but those will only be defined if there
is an actual need for them.

Figure 5: Filltypes

XML Schema representation:

<xsd:complexType name="StrokeType" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SolidStroke" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:StrokeType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="DashedStroke" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:StrokeType">

<xsd:attribute name="sequence">

<xsd:simpleType>

<xsd:list itemType="xsd:double" minLength="2" maxLength="unbounded"/>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Linetype">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

6

<xsd:sequence>

<xsd:element name="stroke" type="sl2:StrokeType"/>

</xsd:sequence>

<xsd:attribute name="id" type="sl2:SId"/>

<xsd:attribute name="lineWidth" type="xsd:double"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Filltype" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:attribute name="id" type="sl2:SId"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SingleColorFill">

<xsd:complexContent>

<xsd:extension base="sl2:Filltype">

<xsd:attribute name="color" type="sl2:Color"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Shapes

This will probably be the most difficult part of the render extension and we
hope to get much feedback as to what shapes others need for their appli-
cations. As stated above all shapes will be derived from a base type called
Shape which extends SBase and has a unique id of type SId. Further on
we derive two more classes namely Shape2D and Shape3D which will form
the basis for all 2D and 3D shapes to come. Since probably very few people
are considering 3D layout for their applications, we will concentrate an 2D
specific things first. The 2D shapes that we have come up with so far are
curves, text labels, bitmaps, ellipses, rectangles and triangles. Of those, the
curves are somewhat different since they are not 2D but apply to 3D as well,
therefore we derived the Path object directly from Shape. Some issues that
we will have to think about sooner or later are:

• Should text and bitmap objects be scaled at all?

• How should 2D layout programs treat 3D objects?

• How should 2D objects be treated in an 3D environment?

XML Schema representation:

<xsd:complexType name="Shape" abstract="true">

<xsd:complexContent>

7

Figure 6: Abstract shape baseclasses

<xsd:extension base="sl2:SBase">

<xsd:attribute name="id" type="sl2:SId"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Shape2D" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:Shape">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Shape3D" abstract="true">

<xsd:complexContent>

<xsd:extension base="sl2:Shape">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Ellipses

The ellipses is a subclass of Shape2D. Additional attributes for the ellipses
are linecolor, linetype and filltype as well as the x and y radius given in the
xr and yr attribute. The attributes for linecolor, linetype and filltype are of
type Color, Linetype and Filltype respectively and all three attributes are
optional. If no linecolor is given, the default foreground color should be used.
The default linetype is a SolidStroke with width 1. If filltype is omitted, the
shape is not to be filled.

Figure 7: Ellipses class

<xsd:complexType name="Ellipses">

8

<xsd:complexContent>

<xsd:extension base="sl2:Shape2D">

<xsd:sequence>

<xsd:element name="linecolor" type="sl2:Color" minOccurs="0" maxOccurs="1"/>

<xsd:element name="linetype" type="sl2:Linetype" minOccurs="0" maxOccurs="1"/>

<xsd:element name="filltype" type="sl2:Filltype" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="xr" type="xsd:double"/>

<xsd:attribute name="yr" type="xsd:double"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Triangle

The triangle shape is defined by three points in 2D space which are specified
by the x1,y1, x2,y2 and x3,y3 attributes. The three points are given relative
to the position of the corresponding glyph object from the layout. The
additional attributes for linecolor, linetype and filltype are treated the same
as for the ellipses (see above).

Figure 8: Triangle class

<xsd:complexType name="Triangle">

<xsd:complexContent>

<xsd:extension base="sl2:Shape2D">

<xsd:sequence>

<xsd:element name="linecolor" type="sl2:Color" minOccurs="0" maxOccurs="1"/>

<xsd:element name="linetype" type="sl2:Linetype" minOccurs="0" maxOccurs="1"/>

<xsd:element name="filltype" type="sl2:Filltype" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="x1" type="xsd:double"/>

<xsd:attribute name="y1" type="xsd:double"/>

<xsd:attribute name="x2" type="xsd:double"/>

<xsd:attribute name="y2" type="xsd:double"/>

<xsd:attribute name="x3" type="xsd:double"/>

<xsd:attribute name="y3" type="xsd:double"/>

</xsd:extension>

9

</xsd:complexContent>

</xsd:complexType>

Rectangle

The rectangle objects has two attributes called width and height which spec-
ify the size of the rectangle. The linecolor, linetype and filltype attributes
are also treated the same way as for the ellipses (see above). We added
another two attributes for people that would like to have rounded edges on
their rectangles. The rx and ry attributes specify the radius of the rectangles
edges. A low value would correspond to only slightly rounded edges, whereas
two high values would convert the rectangle into an ellipses. The rx and ry
attribute are of type double are optional and if not specified they default to
0.0 (normal edges). As in SVG, if only one is given, they are assumed to be
equal. An additional constraint is that rx may not exceed half the width of
the rectangle and ry likewise may not exceed half the height of the rectangle.
Even if those values are given, they can easily be ignored if the program does
not support rounded edges.

Figure 9: Rectangle class

<xsd:complexType name="Rectangle">

<xsd:complexContent>

<xsd:extension base="sl2:Shape2D">

<xsd:sequence>

<xsd:element name="linecolor" type="sl2:Color" minOccurs="0" maxOccurs="1"/>

<xsd:element name="linetype" type="sl2:Linetype" minOccurs="0" maxOccurs="1"/>

<xsd:element name="filltype" type="sl2:Filltype" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="width" type="xsd:double"/>

<xsd:attribute name="height" type="xsd:double"/>

<xsd:attribute name="rx" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="ry" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

10

Text

The text object has an optional linecolor attribute of type Color. If omitted,
the default foreground color is to be used. Additionally the text object has
an attribute called family which is either serif, sansserif or monospaced. the
size attribute specifies the size of the font in points. The weight attribute is
optional and is either normal (default) or bold. The same goes for the style
attribute, it is optional as well and either normal (default) or italic. The
actual text belonging to the text object is given as UTF-8 encoded Unicode
string between the opening and the closing text tag. This corresponds much
to the way text is handled in SVG. Unfortunately even in SVG, there is no
way (at least I could not find one) to make the size of an object dependent
on the size of another object. That is, you can not specify that a certain
shape should be surrounded by some other object, like a rectangle. So in
order to have some text surrounded by a rectangular box, the size of the box
would have to be fixed. In some cases, this could well mean that the text
will not fit into the box on some other system because of the font properties
being slightly different. Unfortunately we think that this is something we
will have to live with, but any suggestions as to how we could do something
like that are always welcome. There also is an ImplicitText object which is
derived from text. The difference between a text label and an implicit text
label is that the actual text belonging to the object is not given with the
object, but is derived from the id given by the reference attribute. If the
object connected with the id has a name attribute, this is to be used as the
actual text, otherwise, the id itself is the textual representation. This scheme
is very simple and may not be sufficient for all situations. A somewhat more
elaborate way of handling implicit text would be to specify the text by an
object id together with an attribute name. For example to specify a textual
representation for the initial amount of some species, one would give the id
of the species and the keyword initalAmount.

<xsd:SimpleType name="FontFamily">

<restriction base="string">

<xsd:enumeration value="serif"/>

<xsd:enumeration value="sansseerif"/>

<xsd:enumeration value="monospaced"/>

</restriction>

</xsd:SimpleType

<xsd:SimpleType name="FontWeight">

<restriction base="string">

<xsd:enumeration value="normal"/>

<xsd:enumeration value="bold"/>

</restriction>

</xsd:SimpleType

<xsd:SimpleType name="FontStyle">

11

Figure 10: Text label classes

<restriction base="string">

<xsd:enumeration value="normal"/>

<xsd:enumeration value="italic"/>

</restriction>

</xsd:SimpleType

<xsd:complexType name="Text">

<xsd:complexContent>

<xsd:extension base="sl2:Shape2D">

<xsd:sequence>

<xsd:element name="linecolor" type="sl2:Color" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="family" type="sl2:FontFamily"/>

<xsd:attribute name="size" type="xsd:double"/>

<xsd:attribute name="weight" type="sl2:FontWeight" use="optional" default="normal"/>

<xsd:attribute name="style" type="sl2:FontStyle" use="optional" default="normal"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ImplicitText">

<xsd:complexContent>

<xsd:extension base="sl2:Text">

<xsd:attribute name="reference" type="sl2:SId"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Path

The Path object consists of a curve, which itself consists of a list of line
segments. In addition, the user can specify a linecolor and a linetype which
are both optional. If not given, the default foreground color will be used
as the line color and a SolidStroke with width 1 will be used as the line
type. The curve tag contains a listOfCurveSegments which as the name

12

already suggests contains an arbitrary number of curve segments. For now
we provide the definitions for two types of curve segments (LineSegment
and CubicBezier) but leave it open if this should in future be restricted to
only one type or even generalized to more different line types. All segment
types, which is just CubicBezier so far, are derived from the LineSegment
type. The type of the curve segment has to be specified with a xsi:type
attribute in the curveSegment tag.

Figure 11: Curve classes

<xsd:complexType name="LineSegment">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:attribute name="x1" type="xsd:double"/>

<xsd:attribute name="y1" type="xsd:double"/>

<xsd:attribute name="z1" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="x2" type="xsd:double"/>

<xsd:attribute name="y2" type="xsd:double"/>

<xsd:attribute name="z2" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="CubicBezier">

<xsd:complexContent>

<xsd:extension base="sl2:LineSegment">

<xsd:attribute name="x3" type="xsd:double"/>

<xsd:attribute name="y3" type="xsd:double"/>

<xsd:attribute name="z3" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="x4" type="xsd:double"/>

<xsd:attribute name="y4" type="xsd:double"/>

13

<xsd:attribute name="z4" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfCurveSegments">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="curveSegment" type="sl2:LineSegment"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Curve">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="listOfCurceSegments" type="sl2:ListOfCurveSegments"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Path">

<xsd:complexContent>

<xsd:extension base="sl2:Shape">

<xsd:sequence>

<xsd:element name="Curve" type="sl2:ListOfCurves" minOccurs="1" maxOccurs="1"/>

<xsd:element name="linetype" type="sl2:LineType" minOccurs="0" maxOccurs="1"/>

<xsd:element name="linecolor" type="sl2:Color" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Bitmap

For the time being, the bitmap objects only attribute is the name of a bitmap
file.

Figure 12: Bitmap class

<xsd:complexType name="Bitmap">

<xsd:complexContent>

<xsd:extension base="sl2:Shape2D">

<xsd:attribute name="filename" type="xsd:string"/>

</xsd:extension>

14

</xsd:complexContent>

</xsd:complexType>

Render Groups

A render group is made up of one or more ObjectReference objects. The
ObjectReference object itself consists of a reference to either a shape object
defined in the listOfShapes or a reference to another Group object which
can be either another RenderGroup or a HVBox (see below). Users should
be careful not to create loops here by having objects reference themselves
directly or indirectly. Additionally the ObjectReference contains a transfor-
mation that is to be used on the object. There are two types of transfor-
mations so far; one is called SimpleTransformation and allows for transla-
tion, rotation and scaling of the object. A more elaborate transformation is
the AffineTransformation which lets the user specify a 4x3 transformation
matrix. (see http://mathworld.wolfram.com/AffineTransformation.html) In
essence, the affine transformation gives you some additional transformations
that you can not do with the SimpleTransformation, but for 99% of the users,
the SimpleTransformation should suffice. All attributes for both transforma-
tions are optional and default to the identity transformation.

Figure 13: Transformation classes

XML Schema representation:

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

</xsd:extension>

</xsd:complexContent>

15

Figure 14: Absolute layout classes

</xsd:complexType>

<xsd:complexType name="SimpleTransformation">

<xsd:complexContent>

<xsd:extension base="sl2:Transformation">

<xsd:attribute name="tx" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="ty" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="tz" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="rx" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="ry" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="rz" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="sx" type="xsd:double" use="optional" default="1.0"/>

<xsd:attribute name="sy" type="xsd:double" use="optional" default="1.0"/>

<xsd:attribute name="sz" type="xsd:double" use="optional" default="1.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AffineTransformation">

<xsd:complexContent>

<xsd:extension base="sl2:Transformation">

<xsd:attribute name="a0" type="xsd:double" use="optional" default="1.0"/>

<xsd:attribute name="a1" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="a2" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="a3" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="b0" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="b1" type="xsd:double" use="optional" default="1.0"/>

<xsd:attribute name="b2" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="b3" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="c0" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="c1" type="xsd:double" use="optional" default="0.0"/>

<xsd:attribute name="c2" type="xsd:double" use="optional" default="1.0"/>

<xsd:attribute name="c3" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="RenderItem">

<xsd:complexContent>

<xsd:extension base="sl2:SBase">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

16

<xsd:complexType name="ObjectReference">

<xsd:complexContent>

<xsd:extension base="sl2:RenderItem">

<xsd:sequence>

<xsd:choice>

<xsd:element name="transformation" type="sl2:Transformation"/>

<xsd:element name="transformation" type="sl2:AffineTransformation"/>

</xsd:choice>

</xsd:sequence>

<xsd:attribute name="object" type="sl2:SId"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:SimpleType name="RenderTypes">

<restriction base="string">

<xsd:enumeration value="species"/>

<xsd:enumeration value="compartment"/>

<xsd:enumeration value="reaction"/>

<xsd:enumeration value="speciesreference"/>

</restriction>

</xsd:SimpleType>

<xsd:complexType name="Group">

<xsd:extension base="sl2:SBase">

<xsd:attribute name="id" type="sl2:SId"/>

<xsd:attribute name="defaultType" type="sl2:RenderTypes" use="optional"/>

</xsd:extension>

</xsd:complexType>

<xsd:complexType name="RenderGroup">

<xsd:complexContent>

<xsd:extension base="sl2:Group">

<xsd:sequence>

<xsd:element name="item" type="sl2:ObjectReference" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Relative Object Layout

So far, objects can only be laid out with absolute positioning, but sometimes
you might want to lay out objects relative to each other. For example you
might want to place a text label below a bitmap representation of a species.
Since the bitmap object does not specify the size of the bitmap, you can not
do this with absolute positioning. For cases like that, we introduce two new
simple objects, an HVBox and a Spacer object. The HVBox is a subclass
of Group and has two additional attributes as well as a list of objects of
type RenderItem. The first attribute is called direction and specifies the
direction in which the components of the HVGroup are to be laid out. The
direction can be horizontal or vertical (default). A HVBox with horizontal
layout will place its components beside each other in one row, an HVBox

17

with direction vertical will place the components in a column one below the
next. This layout concept is present in most GUI toolkits and should be easy
to implement. The other attribute is called alignment and is a double value
in the range of 0.0 to 1.0. This value specifies how the individual components
are to be aligned in the direction perpendicular to the Boxes direction. E.g.
if you have a HVBox with direction vertical and specify an alignment value of
0.5, the box will be as wide as the widest component and all components are
centered in the horizontal direction. A value of 0.0 would mean they are right
aligned and a value of 1.0 would have them left aligned. All components can
still have a transformation, but the translational part of the transformation
is ignored. The spacer object is just what the name suggests an object to
create some space between components of an HVBox. E.g. if you want to
have a 10pt space between all the components of the Box, you just add a
spacer with a size value of 10 between each pair of objects.

Figure 15: Relative layout classes

<xsd:simpleType name="HVBoxDirection">

<restriction base="string">

<xsd:enumeration value="horizontal"/>

<xsd:enumeration value="vertical"/>

</restriction>

</xsd:simpleType>

<xsd:simpleType name="AlignmentRange">

<xsd:restriction base="xsd:double">

<xsd:minInclusive value="0.0"/>

<xsd:maxInclusive value="1.0"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="HVBox">

<xsd:complexContent>

<xsd:extension base="sl2:Group">

<xsd:sequence>

<xsd:element name="item" type="sl2:RenderItem" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

18

<xsd:attribute name="direction" type="sl2:HVBoxDirection" use="optional"

default="vertical"/>

<xsd:attribute name="alignment" type="sl2:AlignmentRange" use="optional"

default="0.0"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Spacer">

<xsd:complexContent>

<xsd:extension base="sl2:RenderItem">

<xsd:attribute name="size" type="xsd:double"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Connection to Layout

In the documentation to the layout part of this extension we described, that
the layout contains compartmentGlyphs, reactionGlyphs and speciesRefer-
enceGlyphs as well as additionalGraphicalObjects. In order to link the ren-
der information to the layout, all those objects have been extended by an
attribute called renderGroup which would reference the id of the correspond-
ing renderGroup. Additionally we added a transformation object to all the
glyphs mentioned above as to allow a transformation to be used on the ren-
derGroup. We put this transformation here rather than in the renderGroup
itself because this would allow the user to use the same render group with
several glyphs but at different sizes, rotations and positions etc.

<listOfLayouts>

.

.

.

<speciesGlyph id="ATP_Glyph" species="ATP" x="20.0" y="10.0" w="50" h="50"

renderGroup="specRefRender2">

</speciesGlyph>

<speciesGlyph id="ATP_Glyph" species="ATP" x="70.0" y="80.0" w="100" h="100"

renderGroup="specRefRender1">

<transformation xsi:type="sl2:Transformation mx="10" my="10" sx="0.8" sy="0.8"/>

</speciesGlyph>

.

.

.

</listOfLayouts>

<render>

<listOfColors>

<color id="Color_Green" red="0" green="255" blue="0"/>

<color id="Color_Black" red="0" green="0" blue="0"/>

</listOfColors>

<listOfLinetypes>

<lineType id="SolidLine" width="1">

<strokeType xsi:type="sl2:SolidStroke"/>

</lineType>

</listOfLinetypes>

<listOfShapes>

<shape xsi:type="sl2:Circle" id="StandCircle" lineType="SolidLine"

linecolor="Color_Green" radius="1.0"/>

19

<shape xsi:type="sl2:Text" id="label1" family="sansserif" size="12"

linecolor="Color_Black">Glucose</shape>

<shape xsi:type="sl2:Text" id="label2" family="sansserif" size="12"

linecolor="Color_Black">ATP</shape>

</listOfShapes>

<listOfRenderGroups>

<renderGroup id="specRefRender1">

<shape shape="StandCircle">

<transformation sx="100" sy="100"/>

</shape>

<shape shape="label1">

<transformation mx="10" my="44"/>

</shape>

</renderGroup>

<renderGroup id="specRefRender2">

<shape shape="StandCircle">

<transformation sx="50.0" sy="50.0"/>

</shape>

<shape shape="label1">

<transformation mx="7.0" my="19.0"/>

</shape>

</renderGroup>

</listOfRenderGroups>

</render>

O.K. As this is a made up example it probably has tons of mistakes, but
we hope that it still shows the general principal that we think could be used
to connect layout and render information. So what this example is supposed
to show is a layout part with (among other things) two speciesGlyphs. Those
have different sizes and different positions. In the render part, we define some
colors and a line type. We don’t use any fill types in this example. Next
come the basic shapes that we will use to build up the render information.
Each shape can in principal be used in more than one renderGroup as demon-
strated with the circle. Last but not least we define two renderGroups each
with a circle and a text label. Since the textLabels have different sizes, the
circle has to be scaled to the right size with a transformation. Now we can
reference these two renderGroups in our speciesGlyphs from the layout part.
There is now a tag called renderGroup and an optional transformation to
be used on the renderGroup. While the first renderGroup is rendered un-
changed, the second one is scaled down a little bit and then moved as to be
in the center of the bounding box of the speciesGlyph again.

Todo

• Make more examples

• Come up with some easy way to have a frame around an object

• Do the actual implementation on top of libsbml

20

• Correct inconsistencies between text and diagrams and all other bugs
for that matter

Changes

Version 0.2

• render tag got two new attributes to define a default foreground an
background color.

• Some 2D Shapes have been defined.

• Handling of text labels has been refined.

• Two new classes for relative positioning were introduced.

• Species-, Compartment-, Reaction- and SpeciesReferenceGlyphs can
now have a default render object

• Some UML diagrams were added

• Rectangles can have rounded edges

Outlook

We are aware that this is just a first draft of what might one day become
the render information part of the SBML layout extension as proposed by
us. We think that this can again be used as a starting point and as a base
for discussion with everyone from the sbml community who is interested in
this extension. With the help of all those people it is our hope that both
extension will be in a usable state before long.

21

