
Including Layout Information in SBML Files
Version 1.1a

Ralph Gauges, Ursula Rost, Sven Sahle and Katja Wegner
European Media Laboratory
Schloss-Wolfsbrunnen Weg 33

69118 Heidelberg
Germany

September 5, 2003

Introduction

With SBML there now is a common standard for the exchange of dynamical
systems data which has already been adopted by many applications in this
field [1, 2, 3]. Since SBML had no means of storing layout information for
reaction networks, we developed an extension to SBML that would allow
us to store this layout information in SBML files. There already exists an
extension to SBML by Herbert M. Sauro that deals with layout information
in SBML files [5] well tailored to his program JDesigner [4]. However, in
order to provide generality, our specification tries to limit the extensions to
just specifying information that concerns the placement of the objects and
leaves the rendering to the application.

Design principles and general structure

The overall structure of this proposal reflects some design decisions that will
be explained in this paragraph. These decisions are mainly based on the
discussion on the mailing list.

First it was requested that it should be possible to have several layouts
in one sbml file. This leads to the obvious choice to have a listOfLayouts
outside the model part of the sbml file instead of direct annotations to the
model elements.

The next question is how tight the relation between the model and the
layout should be. It was requested that there should be no strict one-to-one
connection between model elements and layout elements. Therefore the lay-
out part of the sbml file cannot just duplicate the structure of the model
part. This leads to a structure where a layout contains several lists of layout
elements (compartmentGlyphs, speciesGlyphs, ...) There seems to be con-
sensus that one model element can be represented by several layout elements.
For example it can be useful to have several representations of one species
in the layout to avoid lots of crossing arrows. This can be accomplished if
every layout element has a field that refers to the id of a model element.

We also think that there are cases where a layout element does not corre-
spondent to exactly one model element. This could occur if the layout shows
a simplified version of the model where one reaction in the layout correspon-
dents to several reactions and intermediate species in the model. This is the
reason why the field in the layout elements that refers to the model elements
is optional.

Furtheron we think that the layout should be described in biochemical
terms (species, reactions, ...) and not in terms of graph theory (nodes, edges).

1

Otherwise an existing language for graph layouts could be used.
The result of all this is a way to describe a graphical layout of a reac-

tion network in biochemical terms. This layout can be closely tied to the
biochemical model. A graphical model editor for example would typically
create a layout that is closely connected (by a one-to-several relation from
the model elements to the layout elements) to the model. A more general
layout design program could also create a layout that is not so closely tied
to the model, for example it could create a layout that shows a simplified
version of the model.

Last but not least we decided to separate between layout information and
render information. By layout information we mean the position and size of
all the layout elements and their relations. Render infrmation would be
colours, line widths, bitmaps, ... While every program dealing with layouts
should be able to read and write the layout information the render infor-
mation could be ignored or could have program specific extensions. This
proposal concentrates on the layout part because we thought it would be
easier to reach an agreement on the overall structure of the layout without
the rendering details.

Namespace

For the extensions we use a separate namespace of the following form
xmlns:sl2=”http://projects.eml.org/bcb/sbml/level2”. A SBML file that would
utilize the extension could have the following form:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns:sbml="http://www.sbml.org/sbml/level2" level="2" \\

version="1"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level2
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">

Metainformation

All the layout classes below are now derived from a class called SBase which
was taken from the SBML Level 2 schema specification
(http://www.sbml.org/sbml/level2/version1/). This enables programs to store
metainformation with the layout objects.

<xsd:complexType name="SBase" abstract="true">

2

<xsd:sequence>
<xsd:element name="notes" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml"

processContents="skip"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="annotation" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>
</xsd:complexType>

<listOfLayouts > and <layout >

Due to the discussion on the sbml mailing list, we took the layout information
out of the actual model into a separate tag called listOfLayouts which is
placed within the annotation tag of the sbml tag. This list can hold one
or more layout objects which in turn hold layout information for some or
all elements of the sbml model plus additional objects that need not be
connected to the model. The only attribute for the <layout > tag is an id
which uniquely identifies the layout object. Ids are defined to be the same
as SId in SBML Level 2.

<xsd:simpleType name="SId">
<xsd:restriction base="xsd:string">
<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="ListOfCompartmentGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="compartmentGlyph" type="sl2:CompartmentGlyph"

maxOccurs="unbounded"/>
</xsd:sequence>

3

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfSpeciesGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="speciesGlyph" type="sl2:SpeciesGlyph" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfReactionGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="reactionGlyph" type="sl2:ReactionGlyph" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfAdditionalGraphicalObjects">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfGroups">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="group" type="sl2:Group" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Layout">
<xsd:sequence>
<xsd:element name="listOfCompartmentGlyphs"

4

type="sl2:ListOfCompartmentGlyphs" minOccurs="0"/>
<xsd:element name="listOfSpeciesGlyphs" type="sl2:ListOfSpeciesGlyphs"

minOccurs="0"/>
<xsd:element name="listOfReactionGlyphs" type="sl2:ListOfReactionGlyphs"

minOccurs="0"/>
<xsd:element name="listOfAdditionalGraphicalObjects"

type="sl2:ListOfAdditionalGraphicalObjects" minOccurs="0"/>
<xsd:element name="listOfGroups" type="sl2:ListOfGroups" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="sl2:SId"/>

</xsd:complexType>

<xsd:complexType name="ListOfLayouts">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="layout" type="sl2:Layout" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="listOfLayouts" type="sl2:ListOfLayouts"/>

<Compartment> Layout Information

For compartments we specify a layout tag that holds the location of the
compartment as x, y and z coordinates and the size as width, height and
depth. All values are of type double and the origin is in the upper left to
facilitate the implementation. The z and depth value are optional and their
value defaults to 0.0 if not specified otherwise. In addition we specify an
attribute called id which uniquely identifies the compartmentGlyph element
as well as a compartment attribute which is the id of the corresponding
compartment in the model. The compartment attribute is optional to
allow the program to specify compartment representations that do not have
a direct correspondence in the model.

XML Schema representation:

<xsd:complexType name="CompartmentGlyph">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:attribute name="compartment" type="sl2:SId" use="optional"/>
<xsd:attribute name="id" type="sl2:SId"/>
<xsd:attribute name="x" type="xsd:double"/>
<xsd:attribute name="y" type="xsd:double"/>

5

<xsd:attribute name="z" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="w" type="xsd:double"/>
<xsd:attribute name="h" type="xsd:double"/>
<xsd:attribute name="d" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<compartment id="compartment" volume="1"/>
.
.
.
<sl2:listOfCompartmentGlyphs>

<sl2:compartmentGlyph id="cGlyph" compartment="compartment"
x="10.0" y="10.0" w="60" h="50"/>

</sl2:listOfCompartmentGlyphs>
.
.
.

<Species> Layout Information

Since an sbml document can contain species that don’t appear in any reaction
a species can have zero or more representations on screen which are repre-
sented by <speciesGlyph> and are grouped in a <listOfSpeciesGlyphs> tag.
Each <speciesGlyph> tag has a unique id which is referenced in the layout
information of the corresponding SpeciesReference object (see below). The
actual layout information is given as x, y and z coordinates as well as width,
height and depth. As in the compartment layout, the z coordinate and the
depth value are optional. They default to 0.0 if not specified. In addition
the speciesGlyph object has a species attribute which is the id of the cor-
responding species object in the model. The species attribute is optional
to allow the program to specify species representations that do not have a
direct correspondence in the model. This might be useful if some pathway
has been collapsed, but is still treated by layout programs.

XML Schema representation:

<xsd:complexType name="SpeciesGlyph">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">

6

<xsd:attribute name="species" type="sl2:SId" use="optional"/>
<xsd:attribute name="id" type="sl2:SId"/>
<xsd:attribute name="x" type="xsd:double"/>
<xsd:attribute name="y" type="xsd:double"/>
<xsd:attribute name="z" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="w" type="xsd:double"/>
<xsd:attribute name="h" type="xsd:double"/>
<xsd:attribute name="d" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<species id="ATP" compartment="compartment" initialAmount="0">
.
.
.
<sl2:listOfSpeciesGlyphs>
<sl2:speciesGlyph id="ATP_Glyph" species="ATP" x="295.0" y="123.0" w="16.0"/>

.

.

.
</sl2:listOfSpeciesGlyphs>
.
.
.

<Reaction> Layout Information

The reaction layout consists of two pseudo nodes. One that connects to the
substrates and one that connects to the products of the reaction. Each pseudo
node has a x, y and z coordinates which are named x1,y1,z1 and x2,y2,z2
respectively. The z1 and z2 coordinates are optional and they default to
0.0. We suggest connecting the two pseudo nodes by a straight line, but this
is up to the application programmer. Additionally we have the id which
identifies this graphical representation object and the reaction attribute
which is the id of the corresponding reaction in the model. Again, this
reference is optional.

XML Schema representation:

7

<xsd:complexType name="ListOfSpeciesReferenceGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="speciesReferenceGlyph" type="sl2:SpeciesReferenceGlyph"

minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ReactionGlyph">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="listOfSpeciesReferenceGlyphs"

type="sl2:ListOfSpeciesReferenceGlyphs"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="reaction" type="sl2:SId" use="optional"/>
<xsd:attribute name="id" type="sl2:SId"/>
<xsd:attribute name="x1" type="xsd:double"/>
<xsd:attribute name="y1" type="xsd:double"/>
<xsd:attribute name="z1" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="x2" type="xsd:double"/>
<xsd:attribute name="y2" type="xsd:double"/>
<xsd:attribute name="z2" type="xsd:double" use="optional" default="0.0"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<reaction id="reaction_0" reversible="false">
<listOfReactants>

<speciesReference species="P_i" stoichiometry="1"/>
.
.
.

</reaction>
.
.
.
<sl2:listOfReactionGlyphs>
<sl2:reactionGlyph id="reaction_0_Glyph" reaction="reaction_0"

x1="119.0" y1="166.0" x2="120.0" y2="183.0"/>

8

.

.

.
</sl2:listOfReactionGlyphs>
.
.
.

<SpeciesReference> Layout Information

The graphical connection between a speciesGlyph and a reactionGlyph (which
would be an arrow or some curve in most cases) is represented by the species-
ReferenceGlyph object. A listOfSpeciesReferenceGlyphs is contained
in a reactionGlyph.

The speciesReferenceGlyph has a speciesGlyph attribute that con-
tains the id of the graphical object that is to be connected to the reac-
tionGlyph. This can be the id of a graphical representation of a species (as
defined in the <listOfSpeciesGlyphs>) or the id of a group (see below). The
speciesReference attribute refers to a speciesReference in the model and is
optional. Since species references in sbml level 1 as well as level 2 do not have
ids, we choose to put a new tag called id which has an attribute called id
that is of type sl2:SId into the annotation part of the corresponding Species-
Reference element. This tag has to be unique within the global namespace of
the SBML model and can thus be used to reference a given species reference.
Like all other glyphs in this proposal a speciesReferenceGlyph also has an id
which can be used used to uniquely identify it. The role attribute is used
to specify how the species reference should be displayed. Allowed values
are substrate, product, sidesubstrate, sideproduct, modifier, activator and
inhibitor. This attribute is optional and should only be necessary if the op-
tional speciesReference attribute is not given or if the respective information
from the model needs to be overridden. The values substrate and product are
used if the species reference is a main product or substrate in the reaction.
sidesubstrate and sideproduct are used for stuff like ATP, NAD+, etc.
that some renderers might choose to display as side reactions. activator
and inhibitor are modifiers where their influence on the reaction is known
and modifier is a more general term if the influence is unknown or changes
during the course of the simulation. This list is probably not exhaustive and
will be updated as needed.

So far we have defined which graphical objects should be connected to the
reaction glyph in which way. This is the minimum information that a render
program with biochemical knowledge needs to render the reaction layout. For

9

generality two alternative ways to specify more detailed layout information
are provided. In most cases the relation of a species to a reaction will be
graphically represented by a curve. In this case a curve tag that contains a
listOfCurveSegments can be used. The listOfCurveSegments contains
an arbitrary number of curve segments. For now we provide the definitions for
two types of curve segments (LineSegment and CubicBezier) but leave it
open if this should in future be restricted to only one type or even generalized
to more different line types. All segment types, which is just cubicBezier so
far, are derived from the straightLine type. The type of the curve segment
has to be specified with a xsi:type attribute in the curveSegment tag.
On the other hand if the graphical representation of the connection between
reaction and species cannot be described as a curve a boundingBox tag
can be given instead of a curve. The boundingBox has attributes for its
coodinates and size (just as in compartmentGlyph and speciesGlyph).
The boundingBox, curve, listOfCurveSegments and all segment types are not
derived from SBase since we figured the annotations and notes would not be
necesssary.

XML Schema representation:

<xsd:complexType name="BoundingBox">
<xsd:attribute name="x" type="xsd:double"/>
<xsd:attribute name="y" type="xsd:double"/>
<xsd:attribute name="z" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="w" type="xsd:double"/>
<xsd:attribute name="h" type="xsd:double"/>
<xsd:attribute name="d" type="xsd:double" use="optional" default="0.0"/>
</xsd:complexType>

<xsd:complexType name="LineSegment">
<xsd:attribute name="x1" type="xsd:double"/>
<xsd:attribute name="y1" type="xsd:double"/>
<xsd:attribute name="x2" type="xsd:double"/>
<xsd:attribute name="y2" type="xsd:double"/>
</xsd:complexType>

<xsd:complexType name="CubicBezier">
<xsd:complexContent>

<xsd:extension base="sl2:LineSegment">
<xsd:attribute name="cx1" type="xsd:double"/>
<xsd:attribute name="cy1" type="xsd:double"/>
<xsd:attribute name="cx2" type="xsd:double"/>
<xsd:attribute name="cy2" type="xsd:double"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

10

<xsd:complexType name="ListOfCurveSegments">
<xsd:sequence>

<xsd:element name="curveSegment" type="sl2:LineSegment"
minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Curve">
<xsd:sequence>
<xsd:element name="listOfCurceSegments" type="sl2:ListOfCurveSegments"/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="RoleString">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="substrate"/>
<xsd:enumeration value="product"/>
<xsd:enumeration value="sidesubstrate"/>
<xsd:enumeration value="sideproduct"/>
<xsd:enumeration value="modifier"/>
<xsd:enumeration value="activator"/>
<xsd:enumeration value="inhibitor)"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="SpeciesReferenceGlyph">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:choice>
<xsd:element name="boundingBox" type="sl2:BoundingBox" minOccurs="0" maxOccurs="1"/>
<xsd:element name="curve" type="sl2:Curve" minOccurs="0" maxOccurs="1"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="id" type="sl2:SId"/>
<xsd:attribute name="speciesGlyph" type="sl2:SId" use="optional"/>
<xsd:attribute name="speciesReference" type="sl2:SId" use="optional"/>
<xsd:attribute name="role" type="sl2:RoleString" use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

example:

.

.

.
<sl2:speciesGlyph id="P_iGlyph" species="P_i_s1" x="0.0" y="1.8"

w="1.0" h="1.0"/>

11

.

.

.
<sl2:reactionGlyph id="reaction_0_Glyph" reaction="reaction_0"

x1="2.3" y1="1.0" x2="3.0" y2="1.0">
<sl2:listOfSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP1_Glyph" speciesGlyph="P_iGlyph"

speciesReference="P_i_sr1">
<sl2:curve>
<sl2:listOfCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="0.0" y1="1.8"

x2="0.3" y2="0.8"
cx1="0.1" cy1="1.9" cx2="0.3" cy2="0.7"/>

<sl2:curveSegment xsi:type="sl2:LineSegment" x1="0.3" y1="0.8"
x2="2.3" y2="1.0" />

<sl2:/listOfCurveSegments>
<sl2:/curve>

</sl2:speciesReferenceGlyph>
.
.
.

</sl2:listOfSpeciesReferenceGlyphs>
</sl2:reactionGlyph>

.

.

Additional Graphical Representations

A lot of people require graphical representation for objects that have no
correspondence in the model. For this purpose we added a <listOfAddition-
alGraphicalObjects>which is exactly what the name suggests. The type and
syntax of the objects that are allowed are yet to be defined. So far this list
can hold objects of any type just like the annotations in sbml.

Grouping Information

In this specification, we added the possibility to group several representation
objects. This might be useful for editors that need to know which objects
should be moved together when doing drags. Another possibility one gets
with grouping is to group several objects together and have just one re-
lationGlyph object for the whole group. E.g. someone want to display a
reaction as A+B —> C+D in this case, he would group the species reference
representations for the substrates and the additional graphical object that
represents the ’+’ sign and adds the layoutGlyph for the connection to the

12

reaction. Likewise he would do it for the products. Eachgroup object has an
id which can be referenced in a reaction representation as a species reference
representation. Each group consists of two or more components which have
an attribute called ref that is a reference to the graphical object that is to
be added to the group. Examples will follow soon.

<xsd:complexType name="Component">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:attribute name="ref" type="sl2:SId"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Group">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="component" type="sl2:Component" minOccurs="2"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="sl2:SId"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Further Plans

The extensions so far leave the rendering of the objects to the application.
So each application has to come up with an extension of its own to store
rendering information. In the future we hope to come up with a general way
for specifying rendering information as well. This document is a work in
progress and can be subject to changes any time. We are glad for any sug-
gestions, corrections or hints to further improve these extensions. Hopefully
with some help we could come up with a set of extensions that would suite
the needs of many applications developed in this area. This specification was
intended for the use with sbml level 2. With some slight changes it can also
be used with sbml level 1 documents. Actually the only major changes that
would have to be made is to change all references to SId to be references to
SNames.

13

Example File

Last but not least, we include a small sample file to illustrate and comple-
ment the paragraphs above. Note that both the picture and the example
code were manually modified. There does not exist an actual implementa-
tion of this latest version of our proposal. The model consists of two reac-
tions. Which are the first reaction of glycolysis where glucose is converted
to glucose-6-phosphate (G6P) and the reverse reaction of gluconeogenesis
where glucose-6-phosphate is hydrolyzed to glucose. We did not include any
coordinates in the third dimension, since we are only working in 2D space
so far. As can be seen in the screenshot, the glucose SpeciesReference has
two representational objects on screen whereas glucose-6-phosphate only has
one. This difference is reflected in the file where the glucose species has two
nodes in the listOfNodes whereas G6P only has one. This example show not
all but only the main features of our proposal.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level2

http://projects.eml.org/bcb/sbml/level2/layout2.xsd">
<model name="Untitled">
<listOfCompartments>

<compartment id="compartment" volume="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="ATP" compartment="compartment" initialAmount="0"/>
<species id="P_i" compartment="compartment" initialAmount="0"/>
<species id="Glucose" compartment="compartment" initialAmount="0"/>
<species id="ADP" compartment="compartment" initialAmount="0"/>
<species id="H2O" compartment="compartment" initialAmount="0"/>
<species id="G6P" compartment="compartment" initialAmount="0"/>

</listOfSpecies>
<listOfReactions>

<reaction id="reaction_0" reversible="false">
<listOfReactants>

<speciesReference species="H2O" stoichiometry="1">
<annotation>
<sl2:id id="H2O"/>
</annotation>

</speciesReference>
<speciesReference species="G6P" stoichiometry="1">
<annotation>
<sl2:id id="G6P_1"/>
</annotation>

14

Figure 1: One possible rendering of the example layout. This is somewhat
modified by hand because we do not have a working implementation of the
last version of our proposal.

</speciesReference>
</listOfReactants>
<listOfProducts>
<speciesReference species="P_i" stoichiometry="1">
<annotation>
<sl2:id id="P_i_sr1"/>
</annotation>

</speciesReference>
<speciesReference species="Glucose" stoichiometry="1">
<annotation>
<sl2:id id="Glucose_1"/>
</annotation>

</speciesReference>
</listOfProducts>

</reaction>
<reaction id="reaction_1" reversible="false">
<listOfReactants>

15

<speciesReference species="ATP" stoichiometry="1">
<annotation>
<sl2:id id="ATP"/>
</annotation>

</speciesReference>
<speciesReference species="Glucose" stoichiometry="1">
<annotation>
<sl2:id id="Glucose_2"/>
</annotation>

</speciesReference>
</listOfReactants>
<listOfProducts>
<speciesReference species="ADP" stoichiometry="1">
<annotation>
<sl2:id id="ADP"/>
</annotation>

</speciesReference>
<speciesReference species="G6P" stoichiometry="1">
<annotation>
<sl2:id id="G6P_2"/>
</annotation>

</speciesReference>
</listOfProducts>

</reaction>
</listOfReactions>

</model>
<annotation>
<sl2:listOfLayouts xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level2\
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">

<sl2:layout id="layout1" >
<sl2:listOfCompartmentGlyphs>
<sl2:compartmentGlyph id="compGlyph" compartment="compartment"

x="10.0" y="10.0" w="60" h="50"/>
</sl2:listOfCompartmentGlyphs>
<sl2:listOfSpeciesGlyphs>

<sl2:speciesGlyph id="ATP_Glyph" species="ATP" x="295.0" y="123.0"
w="16.0" h="16.0"/>

<sl2:speciesGlyph id="P_iGlyph" species="P_i" x="63.0" y="124.0"
w="16.0" h="16.0"/>

<sl2:speciesGlyph id="Glucose_Glyph1" species="Glucose" x="146.0" y="106.0"
w="16.0" h="16.0"/>

<sl2:speciesGlyph id="Glucose_Glyph2" species="Glucose" x="209.0" y="107.0"
w="16.0" h="16.0"/>

<sl2:speciesGlyph id="ADP_Glyph" species="ADP" x="298.0" y="214.0"
w="16.0" h="16.0"/>

<sl2:speciesGlyph id="H2O_Glyph" species="H2O" x="67.0" y="224.0"
w="16.0" h="16.0"/>

16

<sl2:speciesGlyph id="G6P_Glyph" species="G6P" x="180.0" y="241.0"
w="15.0" h="16.0"/>

</sl2:listOfSpeciesGlyphs>
<sl2:listOfReactionGlyphs>
<sl2:reactionGlyph id="reaction_0_Glyph" reaction="reaction_0"

x1="120.0" y1="183.0" x2="119.0" y2="166.0">
<sl2:listOfSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP1_Glyph" speciesGlyph="P_i_Glyph"

speciesReference="P_i_sr1"/>
<sl2:speciesReferenceGlyph id="SP2_Glyph" speciesGlyph="Glucose_Glyph1"

speciesReference="Glucose_1" role="substrate"/>
<sl2:speciesReferenceGlyph id="SP3_Glyph" speciesGlyph="H2O_Glyph"

speciesReference="H2O"/>
<sl2:speciesReferenceGlyph id="SP4_Glyph" speciesGlyph="G6P_Glyph"

speciesReference="G6P_1">
<sl2:curve>
<sl2:listOfCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="180" y1="241"

x2="120" y2="183"
cx1="155" cy1="230" cx2="120" cy2="200"/>

<sl2:/listOfCurveSegments>
<sl2:/curve>

</sl2:speciesReferenceGlyph>
</sl2:listOfSpeciesReferenceGlyphs>

</sl2:reactionGlyph>
<sl2:reactionGlyph id="reaction_1_Glyph" reaction="reaction_1"

x1="256.0" y1="166.0" x2="257.0" y2="183.0">
<sl2:listOfSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP5_Glyph" speciesGlyph="ATP_Glyph"

speciesReference="ATP"/>
<sl2:speciesReferenceGlyph id="SP6_Glyph" speciesGlyph="Glucose_Glyph2"

speciesReference="Glucose_2"/>
<sl2:speciesReferenceGlyph id="SP7_Glyph" speciesGlyph="ADP_Glyph"

speciesReference="ADP"/>
<sl2:speciesReferenceGlyph id="SP8_Glyph" speciesGlyph="G6P_Glyph"

speciesReference="G6P_2">
<sl2:curve>
<sl2:listOfCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="257" y1="183"

x2="180" y2="241"
cx1="257" cy1="200" cx2="210" cy2="230"/>

<sl2:/listOfCurveSegments>
<sl2:/curve>

</sl2:speciesReferenceGlyph>
</sl2:listOfSpeciesReferenceGlyphs>

</sl2:reactionGlyph>
</sl2:listOfReactionGlyphs>
<sl2:listOfAdditionalGraphicalObjects>

<textLabel id="label1" x="100.0" y="85.0"

17

w="180.0" h="25.0">Reaction Layout</textLabel>
</sl2:listOfAdditionalGraphicalObjects>

</sl2:layout>
</sl2:listOfLayouts>

</annotation>
</sbml>

Contact Information

To contact any of the authors, send an email to:
FIRSTNAME.LASTNAME@eml.villa-bosch.de
e.g.
ralph.gauges@eml.villa-bosch.de

Todo

• Update all the examples and add more.

• Define render information

• Fix all other bugs (-:

List Of Changes

Version 1.1a

• Curve Segments can now hold 3D information.

Version 1.1

• Added new edge information to the speciesRefernceGlyph. Edges can
now be build from lists og straight lines and cubic bezier segments.

• Added the possibility of grouping of several graphical representations.
These groups can then be used in the graphical representation instead
of a SpeciesReferenceGlyph.

• Changed all tag names ending with GR(s) to to names ending with
Glyph(s)

• Dropped refRole attribute from SpeciesReferenceGlyph in favour of an
id in the annotations of the SpeciesReference.

18

• Changed refSpeciesGlyph attribute to ref so it is more consistent with
the rest of the layout objects.

• Fixed the screenshot and corresponding example to correct the error in
the pathway. Sample included does still not fully represent the screen-
shot with this new specification.

• speciesReferences can now be referenced by the speciesReference at-
tribute of the speciesReferenceGlyph. The species reference id that is
needed for this is added into the annotations tag of the speciesReference
tag in the model.

• The naming of references is now more sbml like since the attributes are
called after the object they reference.

References

[1] System Biology Markup Language Level 1 Website
(http://www.sbml.org/sbml/docs/index.html)

[2] Michael Hucka, Andrew Finney, Herbert Sauro, Hamid
Bolouri: Systems Biology Markup Language (SBML) Level
1: Structures and Facilities for Basic Model Definitions
(http://www.sbml.org/sbml/docs/papers/sbml-level-1/html/sbml-
level-1.html)

[3] Hucka M., Finney A., Sauro H.M., Bolouri H., Doyle J.C., Kitano H.,
Arkin A.P., Bornstein B.J., Bray D., Cornish-Bowden A., Cuellar A.A.,
Dronov S., Gilles E.D., Ginkel M., Gor V., Goryanin I.I., Hedley W.J.,
Hodgman T.C., Hofmeyr J.H., Hunter P.J., Juty N.S., Kasberger J.L.,
Kremling A., Kummer U., Le Novere N., Loew L.M., Lucio D., Mendes
P., Minch E., Mjolsness E.D., Nakayama Y., Nelson M.R., Nielsen P.F.,
Sakurada T., Schaff J.C., Shapiro B.E., Shimizu T.S., Spence H.D.,
Stelling J., Takahashi K., Tomita M., Wagner J., Wang J. (2003) The
systems biology markup language (SBML): a medium for representa-
tion and exchange of biochemical network models, Bioinformatics, 19,
524-31.

[4] JDesigner Website (http://www.cds.caltech.edu/ hsauro/JDesigner.htm)

[5] Herbert Sauro: JDesigner SBML Annotation
(http://www.cds.caltech.edu/ hsauro/JDSBMLEx.pdf)

19

